前言
在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流
缓存 缓存的目的是提升系统访问速度和增大系统处理容量
降级 降级是当服务出现问题或者影响到核心流程时,需要暂时屏蔽掉,待高峰或者问题解决后再打开
限流 限流的目的是通过对并发访问/请求进行限速,或者对一个时间窗口内的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待、降级等处理
常用限流算法
常用的限流算法有两种:漏桶算法和令牌桶算法
漏桶算法思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水,当水流入速度过大会直接溢出,可以看出漏桶算法能强行限制数据的传输速率。
对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输。这时候漏桶算法可能就不合适了,令牌桶算法更为适合。
令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。
更多关于漏桶算法和令牌桶算法的介绍可以参考 http://blog.csdn.net/charlesl...
信号量
操作系统的信号量是个很重要的概念,Java 并发库 的Semaphore 可以很轻松完成信号量控制,Semaphore可以控制某个资源可被同时访问的个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
信号量的本质是控制某个资源可被同时访问的个数,在一定程度上可以控制某资源的访问频率,但不能精确控制。
@Test
fun semaphoreTest() {
val semaphore = Semaphore(2)
(1..10).map {
thread(true) {
semaphore.acquire()
println("$it\t${Date()}")
Thread.sleep(1000)
semaphore.release()
}
}.forEach { it.join() }
}
以上示例,创建信号量,指定并发数为2,其输出如下
1 Wed Jan 17 10:31:49 CST 2018
2 Wed Jan 17 10:31:49 CST 2018
3 Wed Jan 17 10:31:50 CST 2018
4 Wed Jan 17 10:31:50 CST 2018
5 Wed Jan 17 10:31:51 CST 2018
6 Wed Jan 17 10:31:51 CST 2018
7 Wed Jan 17 10:31:52 CST 2018
8 Wed Jan 17 10:31:52 CST 2018
9 Wed Jan 17 10:31:53 CST 2018
10 Wed Jan 17 10:31:53 CST 2018
可以很清楚的看到,同一时刻最多只能有2个线程进行输出。
虽然信号量可以在一定程度上控制资源的访问频率,却不能精确控制。
RateLimiter
Google开源工具包Guava提供了限流工具类RateLimiter,该类基于令牌桶算法实现流量限制,使用十分方便。
@Test
fun rateLimiterTest() {
val rateLimiter = RateLimiter.create(0.5)
arrayOf(1,6,2).forEach {
println("${System.currentTimeMillis()} acq $it:\twait ${rateLimiter.acquire(it)}s")
}
}
以上示例,创建一个RateLimiter,指定每秒放0.5个令牌(2秒放1个令牌),其输出见下
1516166482561 acq 1: wait 0.0s
1516166482563 acq 6: wait 1.997664s
1516166484569 acq 2: wait 11.991958s
从输出结果可以看出,RateLimiter具有预消费的能力:
acq 1时并没有任何等待直接预消费了1个令牌
acq 6时,由于之前预消费了1个令牌,故而等待了2秒,之后又预消费了6个令牌
acq 2时同理,由于之前预消费了6个令牌,故而等待了12秒
从另一方面讲,RateLimiter通过限制后面请求的等待时间,来支持一定程度的突发请求(预消费)。
但是某些情况下并不需要这种突发请求处理能力,如某IM厂商提供消息推送接口,但推送接口有严格的频率限制(600次/30秒),在调用该IM厂商推送接口时便不能预消费,否则,则可能出现推送频率超出限制而失败。该情况的处理会在其他博文中介绍。
源码解读
Guava有两种限流模式,一种为稳定模式(SmoothBursty:令牌生成速度恒定),一种为渐进模式(SmoothWarmingUp:令牌生成速度缓慢提升直到维持在一个稳定值)
两种模式实现思路类似,主要区别在等待时间的计算上,本篇重点介绍SmoothBursty
在调用create接口时,实际实例化的为SmoothBursty类
public static RateLimiter create(double permitsPerSecond) {
return create(permitsPerSecond, SleepingStopwatch.createFromSystemTimer());
}
static RateLimiter create(double permitsPerSecond, SleepingStopwatch stopwatch) {
RateLimiter rateLimiter = new SmoothBursty(stopwatch, 1.0 /* maxBurstSeconds */);
rateLimiter.setRate(permitsPerSecond);
return rateLimiter;
}
在解析SmoothBursty原理前,重点解释下SmoothBursty中几个属性的含义
/**
* The currently stored permits.
* 当前存储令牌数
*/
double storedPermits;
/**
* The maximum number of stored permits.
* 最大存储令牌数
*/
double maxPermits;
/**
* The interval between two unit requests, at our stable rate. E.g., a stable rate of 5 permits
* per second has a stable interval of 200ms.
* 添加令牌时间间隔
*/
double stableIntervalMicros;
/**
* The time when the next request (no matter its size) will be granted. After granting a request,
* this is pushed further in the future. Large requests push this further than small requests.
* 下一次请求可以获取令牌的起始时间
* 由于RateLimiter允许预消费,上次请求预消费令牌后
* 下次请求需要等待相应的时间到nextFreeTicketMicros时刻才可以获取令牌
*/
private long nextFreeTicketMicros = 0L; // could be either in the past or future
接下来介绍几个关键函数
/**
* Updates {@code storedPermits} and {@code nextFreeTicketMicros} based on the current time.
*/
void resync(long nowMicros) {
// if nextFreeTicket is in the past, resync to now
if (nowMicros > nextFreeTicketMicros) {
double newPermits = (nowMicros - nextFreeTicketMicros) / coolDownIntervalMicros();
storedPermits = min(maxPermits, storedPermits + newPermits);
nextFreeTicketMicros = nowMicros;
}
}
根据令牌桶算法,桶中的令牌是持续生成存放的,有请求时需要先从桶中拿到令牌才能开始执行,谁来持续生成令牌存放呢?
一种解法是,开启一个定时任务,由定时任务持续生成令牌。这样的问题在于会极大的消耗系统资源,如,某接口需要分别对每个用户做访问频率限制,假设系统中存在6W用户,则至多需要开启6W个定时任务来维持每个桶中的令牌数,这样的开销是巨大的。
另一种解法则是延迟计算,如上resync函数。该函数会在每次获取令牌之前调用,其实现思路为,若当前时间晚于nextFreeTicketMicros,则计算该段时间内可以生成多少令牌,将生成的令牌加入令牌桶中并更新数据。这样一来,只需要在获取令牌时计算一次即可。
final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {
resync(nowMicros);
long returnValue = nextFreeTicketMicros; // 返回的是上次计算的nextFreeTicketMicros
double storedPermitsToSpend = min(requiredPermits, this.storedPermits); // 可以消费的令牌数
double freshPermits = requiredPermits - storedPermitsToSpend; // 还需要的令牌数
long waitMicros =
storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)
+ (long) (freshPermits * stableIntervalMicros); // 根据freshPermits计算需要等待的时间
this.nextFreeTicketMicros = LongMath.saturatedAdd(nextFreeTicketMicros, waitMicros); // 本次计算的nextFreeTicketMicros不返回
this.storedPermits -= storedPermitsToSpend;
return returnValue;
}
该函数用于获取requiredPermits个令牌,并返回需要等待到的时间点
其中,storedPermitsToSpend为桶中可以消费的令牌数,freshPermits为还需要的(需要补充的)令牌数,根据该值计算需要等待的时间,追加并更新到nextFreeTicketMicros
需要注意的是,该函数的返回是更新前的(上次请求计算的)nextFreeTicketMicros,而不是本次更新的nextFreeTicketMicros,通俗来讲,本次请求需要为上次请求的预消费行为埋单,这也是RateLimiter可以预消费(处理突发)的原理所在。若需要禁止预消费,则修改此处返回更新后的nextFreeTicketMicros值。
回头来看SmoothBursty的构造函数
SmoothBursty(SleepingStopwatch stopwatch, double maxBurstSeconds) {
super(stopwatch);
this.maxBurstSeconds = maxBurstSeconds; // 最大存储maxBurstSeconds秒生成的令牌
}
@Override
void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
double oldMaxPermits = this.maxPermits;
maxPermits = maxBurstSeconds * permitsPerSecond; // 计算最大存储令牌数
if (oldMaxPermits == Double.POSITIVE_INFINITY) {
// if we don't special-case this, we would get storedPermits == NaN, below
storedPermits = maxPermits;
} else {
storedPermits =
(oldMaxPermits == 0.0)
? 0.0 // initial state
: storedPermits * maxPermits / oldMaxPermits;
}
}
桶中可存放的最大令牌数由maxBurstSeconds计算而来,其含义为最大存储maxBurstSeconds秒生成的令牌。
该参数的作用在于,可以更为灵活地控制流量。如,某些接口限制为300次/20秒,某些接口限制为50次/45秒等。
在了解以上概念后,就非常容易理解RateLimiter暴露出来的接口
@CanIgnoreReturnValue
public double acquire() {
return acquire(1);
}
@CanIgnoreReturnValue
public double acquire(int permits) {
long microsToWait = reserve(permits);
stopwatch.sleepMicrosUninterruptibly(microsToWait);
return 1.0 * microsToWait / SECONDS.toMicros(1L);
}
final long reserve(int permits) {
checkPermits(permits);
synchronized (mutex()) {
return reserveAndGetWaitLength(permits, stopwatch.readMicros());
}
}
acquire函数主要用于获取permits个令牌,并计算需要等待多长时间,进而挂起等待,并将该值返回
return tryAcquire(permits, 0, MICROSECONDS);
}
public boolean tryAcquire() {
return tryAcquire(1, 0, MICROSECONDS);
}
public boolean tryAcquire(int permits, long timeout, TimeUnit unit) {
long timeoutMicros = max(unit.toMicros(timeout), 0);
checkPermits(permits);
long microsToWait;
synchronized (mutex()) {
long nowMicros = stopwatch.readMicros();
if (!canAcquire(nowMicros, timeoutMicros)) {
return false;
} else {
microsToWait = reserveAndGetWaitLength(permits, nowMicros);
}
}
stopwatch.sleepMicrosUninterruptibly(microsToWait);
return true;
}
private boolean canAcquire(long nowMicros, long timeoutMicros) {
return queryEarliestAvailable(nowMicros) - timeoutMicros <= nowMicros;
}
@Override
final long queryEarliestAvailable(long nowMicros) {
return nextFreeTicketMicros;
}
tryAcquire函数可以尝试在timeout时间内获取令牌,如果可以则挂起等待相应时间并返回true,否则立即返回false
canAcquire用于判断timeout时间内是否可以获取令牌
至此,Guava RateLimiter的原理及用法介绍完毕,对SmoothWarmingUp感兴趣的童鞋可以自行查阅文档或源码。
转:https://segmentfault.com/a/1190000012875897