分布式实战(干货)
spring cloud 实战(干货)
mybatis 实战(干货)
spring boot 实战(干货)
React 入门实战(干货)
构建中小型互联网企业架构(干货)
python 学习持续更新
ElasticSearch 笔记
kafka storm 实战 (干货)
scala 学习持续更新
RPC
深度学习
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1,2,3,4,5,6,7,8])
y = np.array([3,5,7,6,2,6,10,15])
plt.plot(x,y,'r')# 折线 1 x 2 y 3 color
plt.plot(x,y,'g',lw=10)# 4 line w
# 折线 饼状 柱状
x = np.array([1,2,3,4,5,6,7,8])
y = np.array([13,25,17,36,21,16,10,15])
plt.bar(x,y,0.2,alpha=1,color='b')# 5 color 4 透明度 3 0.9
plt.show()
# layer1:激励函数+乘加运算
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
date = np.linspace(1,15,15)
endPrice = np.array([2511.90,2538.26,2510.68,2591.66,2732.98,2701.69,2701.29,2678.67,2726.50,2681.50,2739.17,2715.07,2823.58,2864.90,2919.08]
)
beginPrice = np.array([2438.71,2500.88,2534.95,2512.52,2594.04,2743.26,2697.47,2695.24,2678.23,2722.13,2674.93,2744.13,2717.46,2832.73,2877.40])
print(date)
plt.figure()
for i in range(0,15):
# 1 柱状图
dateOne = np.zeros([2])
dateOne[0] = i;
dateOne[1] = i;
priceOne = np.zeros([2])
priceOne[0] = beginPrice[i]
priceOne[1] = endPrice[i]
if endPrice[i]>beginPrice[i]:
plt.plot(dateOne,priceOne,'r',lw=8)
else:
plt.plot(dateOne,priceOne,'g',lw=8)
#plt.show()
# A(15x1)*w1(1x10)+b1(1*10) = B(15x10)
# B(15x10)*w2(10x1)+b2(15x1) = C(15x1)
# 1 A B C
dateNormal = np.zeros([15,1])
priceNormal = np.zeros([15,1])
#归一化
for i in range(0,15):
dateNormal[i,0] = i/14.0;
priceNormal[i,0] = endPrice[i]/3000.0;
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
# B
w1 = tf.Variable(tf.random_uniform([1,10],0,1))
b1 = tf.Variable(tf.zeros([1,10]))
wb1 = tf.matmul(x,w1)+b1
layer1 = tf.nn.relu(wb1) # 激励函数
# C
w2 = tf.Variable(tf.random_uniform([10,1],0,1))
b2 = tf.Variable(tf.zeros([15,1]))
wb2 = tf.matmul(layer1,w2)+b2
layer2 = tf.nn.relu(wb2)
loss = tf.reduce_mean(tf.square(y-layer2))#y 真实 layer2 计算
#梯度下级法
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(0,10000):
sess.run(train_step,feed_dict={x:dateNormal,y:priceNormal})
#预测下
# w1w2 b1b2 A + wb -->layer2
pred = sess.run(layer2,feed_dict={x:dateNormal})
predPrice = np.zeros([15,1])
for i in range(0,15):
predPrice[i,0]=(pred*3000)[i,0]
plt.plot(date,predPrice,'b',lw=1)
plt.show()
深度学习