STM32Fxx 内存管理

目录:
1.内存管理的原理
2.解析程序
3.程序(在stm32系列单片机开发中都可以使用)
内容:
一:内存管理的原理
内存管理,是指软件运行时对计算机内存资源的分配和使用。
内存管理的实现方法有很多种,他们其实最终都是要实现 2 个函数:malloc 函数(用于内存申请),free函数( 用于内存释放)
本程序实现的是分块式内存管理。原理如下:
STM32Fxx 内存管理_第1张图片
分块式内存管理由内存池和内存管理表两部分组成。内存池被等分为 n块,对应的内存管理表,大小也为 n,内存管理表的每一个项对应内存池的一块内存。
内存管理表的项值代表的意义为:当该项值为 0 的时候,代表对应的内存块未被占用,当该项值非零的时候,代表该项对应的内存块已经被占用,其数值则代表被连续占用的内存块数。比如某项值为 10,那么说明包括本项对应的内存块在内,总共分配了 10 个内存块给外部的某个指针。
内寸分配方向如图所示,是从顶底的分配方向。即首先从最末端开始找空内存。当内存管理刚初始化的时候,内存表全部清零,表示没有任何内存块被占用。
分配原理
当指针 p 调用 malloc 申请内存的时候,先判断 p 要分配的内存块数(m),然后从第 n 项开始,向下查找,直到找到 m 块连续的空内存块(即对应内存管理表项为 0),然后将这 m 个内存管理表项的值都设置为 m(标记被占用),最后,把最后的这个空内存块的地址返回指针 p,完成一次分配。注意,如果当内存不够的时候(找到最后也没找到连续的 m 块空闲内存),则返回 NULL 给 p,表示分配失败。
释放原理
当 p 申请的内存用完,需要释放的时候,调用 free 函数实现。free 函数先判断 p 指向的内存地址所对应的内存块,然后找到对应的内存管理表项目,得到 p 所占用的内存块数目 m(内存管理表项目的值就是所分配内存块的数目),将这 m 个内存管理表项目的值都清零,标记释放,完成一次内存释放。
二、解析程序
1.内存管理控制器
struct _m_mallco_dev mallco_dev=
{
my_mem_init, //内存初始化
my_mem_perused, //内存使用率
mem1base,mem2base, //内存池
mem1mapbase,mem2mapbase, //内存管理状态表
0,0, //内存管理未就绪
};
2.内存管理初始化
memx:所属内存块
void my_mem_init(u8 memx)
{
mymemset(mallco_dev.memmap[memx], 0,memtblsize[memx]*2);//内存状态表数据清零
mymemset(mallco_dev.membase[memx], 0,memsize[memx]); //内存池所有数据清零
mallco_dev.memrdy[memx]=1; //内存管理初始化OK
}
3.内存分配(内部调用)
memx:所属内存块,size:要分配的内存大小(字节),返值:0XFFFFFFFF,代表错误;其他,内存偏移地址。
u32 my_mem_malloc(u8 memx,u32 size)
{
signed long offset=0;
u32 nmemb; //需要的内存块数
u32 cmemb=0;//连续空内存块数
u32 i;
if(!mallco_dev.memrdy[memx])mallco_dev.init(memx);//未初始化,先执行初始化
if(size==0)return 0XFFFFFFFF;//不需要分配
nmemb=size/memblksize[memx]; //获取需要分配的连续内存块数
if(size%memblksize[memx])nmemb++;
for(offset=memtblsize[memx]-1;offset>=0;offset--)//搜索整个内存控制区
{
if(!mallco_dev.memmap[memx][offset])cmemb++;//连续空内存块数增加
else cmemb=0; //连续内存块清零
if(cmemb==nmemb) //找到了连续nmemb个空内存块
{
for(i=0;i
{
mallco_dev.memmap[memx][offset+i]=nmemb;
}
return (offset*memblksize[memx]);//返回偏移地址
}
}
return 0XFFFFFFFF;//未找到符合分配条件的内存块
}
4.分配内存(外部调用)
memx:所属内存块,size:内存大小(字节)。
void *mymalloc(u8 memx,u32 size)
{
u32 offset;
offset=my_mem_malloc(memx,size);
if(offset==0XFFFFFFFF)return NULL;
else return (void*)((u32)mallco_dev.membase[memx]+offset);
}
5.释放内存(内部调用)
memx:所属内存块,offset:内存地址偏移,返回值:0,释放成功;1,释放失败;
u8 my_mem_free(u8 memx,u32 offset)
{
int i;
if(!mallco_dev.memrdy[memx])//未初始化,先执行初始化
{
mallco_dev.init(memx);
return 1;//未初始化
}
if(offset
{
int index=offset/memblksize[memx]; //偏移所在内存块号码
int nmemb=mallco_dev.memmap[memx][index]; //内存块数量
for(i=0;i
{
mallco_dev.memmap[memx][index+i]=0;
}
return 0;
}else return 2;//偏移超区了.
}
6.释放内存(外部调用)
memx:所属内存块,ptr:内存首地址 。
void myfree(u8 memx,void *ptr)
{
u32 offset;
if(ptr==NULL)return;//地址为0.
offset=(u32)ptr-(u32)mallco_dev.membase[memx];
my_mem_free(memx,offset); //释放内存
}
三、程序
/*malloc.c*/
#include "malloc.h"

//内存池(32字节对齐)
__align(32) u8 mem1base[MEM1_MAX_SIZE]; //内部SRAM内存池
__align(32) u8 mem2base[MEM2_MAX_SIZE] __attribute__((at(0X68000000))); //外部SRAM内存池
//内存管理表
u16 mem1mapbase[MEM1_ALLOC_TABLE_SIZE]; //内部SRAM内存池MAP
u16 mem2mapbase[MEM2_ALLOC_TABLE_SIZE] __attribute__((at(0X68000000+MEM2_MAX_SIZE))); //外部SRAM内存池MAP
//内存管理参数
const u32 memtblsize[SRAMBANK]={MEM1_ALLOC_TABLE_SIZE,MEM2_ALLOC_TABLE_SIZE}; //内存表大小
const u32 memblksize[SRAMBANK]={MEM1_BLOCK_SIZE,MEM2_BLOCK_SIZE}; //内存分块大小
const u32 memsize[SRAMBANK]={MEM1_MAX_SIZE,MEM2_MAX_SIZE}; //内存总大小

//内存管理控制器
struct _m_mallco_dev mallco_dev=
{
my_mem_init, //内存初始化
my_mem_perused, //内存使用率
mem1base,mem2base, //内存池
mem1mapbase,mem2mapbase, //内存管理状态表
0,0, //内存管理未就绪
};

void mymemcpy(void *des,void *src,u32 n)
{
u8 *xdes=des;
u8 *xsrc=src;
while(n--)*xdes++=*xsrc++;
}

void mymemset(void *s,u8 c,u32 count)
{
u8 *xs = s;
while(count--)*xs++=c;
}

void my_mem_init(u8 memx)
{
mymemset(mallco_dev.memmap[memx], 0,memtblsize[memx]*2);//内存状态表数据清零
mymemset(mallco_dev.membase[memx], 0,memsize[memx]); //内存池所有数据清零
mallco_dev.memrdy[memx]=1; //内存管理初始化OK
}

u8 my_mem_perused(u8 memx)
{
u32 used=0;
u32 i;
for(i=0;i
{
if(mallco_dev.memmap[memx][i])used++;
}
return (used*100)/(memtblsize[memx]);
}

u32 my_mem_malloc(u8 memx,u32 size)
{
signed long offset=0;
u32 nmemb; //需要的内存块数
u32 cmemb=0;//连续空内存块数
u32 i;
if(!mallco_dev.memrdy[memx])mallco_dev.init(memx);//未初始化,先执行初始化
if(size==0)return 0XFFFFFFFF;//不需要分配
nmemb=size/memblksize[memx]; //获取需要分配的连续内存块数
if(size%memblksize[memx])nmemb++;
for(offset=memtblsize[memx]-1;offset>=0;offset--)//搜索整个内存控制区
{
if(!mallco_dev.memmap[memx][offset])cmemb++;//连续空内存块数增加
else cmemb=0; //连续内存块清零
if(cmemb==nmemb) //找到了连续nmemb个空内存块
{
for(i=0;i
{
mallco_dev.memmap[memx][offset+i]=nmemb;
}
return (offset*memblksize[memx]);//返回偏移地址
}
}
return 0XFFFFFFFF;//未找到符合分配条件的内存块
}

u8 my_mem_free(u8 memx,u32 offset)
{
int i;
if(!mallco_dev.memrdy[memx])//未初始化,先执行初始化
{
mallco_dev.init(memx);
return 1;//未初始化
}
if(offset
{
int index=offset/memblksize[memx]; //偏移所在内存块号码
int nmemb=mallco_dev.memmap[memx][index]; //内存块数量
for(i=0;i
{
mallco_dev.memmap[memx][index+i]=0;
}
return 0;
}else return 2;//偏移超区了.
}

void myfree(u8 memx,void *ptr)
{
u32 offset;
if(ptr==NULL)return;//地址为0.
offset=(u32)ptr-(u32)mallco_dev.membase[memx];
my_mem_free(memx,offset); //释放内存
}

void *mymalloc(u8 memx,u32 size)
{
u32 offset;
offset=my_mem_malloc(memx,size);
if(offset==0XFFFFFFFF)return NULL;
else return (void*)((u32)mallco_dev.membase[memx]+offset);
}

void *myrealloc(u8 memx,void *ptr,u32 size)
{
u32 offset;
offset=my_mem_malloc(memx,size);
if(offset==0XFFFFFFFF)return NULL;
else
{
mymemcpy((void*)((u32)mallco_dev.membase[memx]+offset),ptr,size); //拷贝旧内存内容到新内存
myfree(memx,ptr); //释放旧内存
return (void*)((u32)mallco_dev.membase[memx]+offset); //返回新内存首地址
}
}
/*malloc.h*/
#ifndef __MALLOC_H
#define __MALLOC_H
#ifndef NULL
#define NULL 0
#endif
//定义两个内存池
#define SRAMIN 0 //内部内存池
#define SRAMEX 1 //外部内存池
#define SRAMBANK 2 //定义支持的SRAM块数.
//mem1内存参数设定.mem1完全处于内部SRAM里面.
#define MEM1_BLOCK_SIZE 32 //内存块大小为32字节
#define MEM1_MAX_SIZE 10*1024 //最大管理内存 4K
#define MEM1_ALLOC_TABLE_SIZE MEM1_MAX_SIZE/MEM1_BLOCK_SIZE //内存表大小

//mem2内存参数设定.mem2的内存池处于外部SRAM里面
#define MEM2_BLOCK_SIZE 32 //内存块大小为32字节
#define MEM2_MAX_SIZE 800 *1024 //最大管理内存960K
#define MEM2_ALLOC_TABLE_SIZE MEM2_MAX_SIZE/MEM2_BLOCK_SIZE //内存表大小

//内存管理控制器
struct _m_mallco_dev
{
void (*init)(u8); //初始化
u8 (*perused)(u8); //内存使用率
u8 *membase[SRAMBANK]; //内存池 管理SRAMBANK个区域的内存
u16 *memmap[SRAMBANK]; //内存管理状态表
u8 memrdy[SRAMBANK]; //内存管理是否就绪
};

extern struct _m_mallco_dev mallco_dev; //在mallco.c里面定义

void mymemset(void *s,u8 c,u32 count); //设置内存
void mymemcpy(void *des,void *src,u32 n);//复制内存
void my_mem_init(u8 memx); //内存管理初始化函数(外/内部调用)
u32 my_mem_malloc(u8 memx,u32 size); //内存分配(内部调用)
u8 my_mem_free(u8 memx,u32 offset); //内存释放(内部调用)
u8 my_mem_perused(u8 memx); //获得内存使用率(外/内部调用)

//外部调用函数
void myfree(u8 memx,void *ptr); //内存释放(外部调用)
void *mymalloc(u8 memx,u32 size); //内存分配(外部调用)
void *myrealloc(u8 memx,void *ptr,u32 size);//重新分配内存(外部调用)
#endif

你可能感兴趣的:(STM32,STM32,内存管理)