Android系统启动过程往细了说可以分为5步:
Loader --》Kernel --》Native --》Framework --》Application
Kernel层是指Android内核层,到这里才刚刚开始进入Android系统
这里的Native层主要包括init孵化来的用户空间的守护进程、HAL层以及开机动画等。启动init进程(pid=1),是Linux系统的用户进程,init进程是所有用户进程的鼻祖
这些层之间,有的并不能直接交流,比如Native与Kernel之间要经过系统调用才能访问,Java层和Native层需要通过JNI进行调用
严格来说,Android系统实际上是运行于Linux内核上的一系列服务进程,这些进程是维持设备正常运行的关键,而这些进程的老祖宗就是init进程
上面也介绍到了,当内核启动完成后,就会创建用户空间的第一个进程,即init进程;后面所有的进程,比如Binder机制中的ServiceManager,Zygote都是由init进程孵化出来的
当init进程启动后会调用/system/core/init/Init.cpp的main()方法
int main(int argc, char** argv) {
...
klog_init(); //初始化kernel log,位于设备节点/dev/kmsg
klog_set_level(KLOG_NOTICE_LEVEL); //设置输出的log级别
// 输出init启动阶段的log
NOTICE("init%s started!\n", is_first_stage ? "" : " second stage");
property_init(); //创建一块共享的内存空间,用于属性服务
signal_handler_init(); //初始化子进程退出的信号处理过程
property_load_boot_defaults(); //加载default.prop文件
start_property_service(); //启动属性服务器(通过socket通信)
init_parse_config_file("/init.rc"); //解析init.rc文件
//执行rc文件中触发器为 on early-init的语句
action_for_each_trigger("early-init", action_add_queue_tail);
//等冷插拔设备初始化完成
queue_builtin_action(wait_for_coldboot_done_action, "wait_for_coldboot_done");
queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
//设备组合键的初始化操作
queue_builtin_action(keychord_init_action, "keychord_init");
// 屏幕上显示Android静态Logo
queue_builtin_action(console_init_action, "console_init");
//执行rc文件中触发器为 on init的语句
action_for_each_trigger("init", action_add_queue_tail);
queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
char bootmode[PROP_VALUE_MAX];
//当处于充电模式,则charger加入执行队列;否则late-init加入队列。
if (property_get("ro.bootmode", bootmode) > 0 && strcmp(bootmode, "charger") == 0) {
action_for_each_trigger("charger", action_add_queue_tail);
} else {
action_for_each_trigger("late-init", action_add_queue_tail);
}
//触发器为属性是否设置
queue_builtin_action(queue_property_triggers_action, "queue_property_triggers");
while (true) {
if (!waiting_for_exec) {
execute_one_command();
restart_processes();
}
int timeout = -1;
if (process_needs_restart) {
timeout = (process_needs_restart - gettime()) * 1000;
if (timeout < 0)
timeout = 0;
}
if (!action_queue_empty() || cur_action) {
timeout = 0;
}
epoll_event ev;
//循环 等待事件发生
int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, timeout));
if (nr == -1) {
ERROR("epoll_wait failed: %s\n", strerror(errno));
} else if (nr == 1) {
((void (*)()) ev.data.ptr)();
}
}
return 0;
}
这里很重要的一句话就是init_parse_config_file,然后去解析init.rc文件,init.rc位于/bootable/recovery/etc/init.rc;需要注意的是这就是一个脚本文件,就像Android打包用到的gradle脚本一样
这个文件解析具体实现在init_parser.cpp文件中,一个完整的init.rc脚本由四种类型的声明组成
rc文件有一些通用的语法规则
Actions代表一些Action,Action代表一组命令(Commands),每个Action都有一个trigger(触发器),这个触发器决定了在什么情况下执行该Action中定义的命令;当一些条件满足触发器的条件时,该Action中定义的命令会被添加到“命令执行队列”的尾部,如果命令已经存在了就不会再添加了
Action的格式如下
on ## on后面接触发条件
## 命令1
## 命令2
## 命令3
...
不同的脚本用【on】来区分,on后面跟一个触发器,当被触发时,下面的命令就会以此执行
常用的有以下几种事件触发器
类型 说明
-------------------------------------------------
boot init.rc被装载后触发
device-added- 当设备节点添加时触发
device-removed- 当设备节点移除时触发
service-exited- 在指定的服务(service)退出时触发
early-init init程序初始化之前触发
late-init init程序初始化之后触发
init 初始化时触发(在 /init.conf (启动配置文件)被装载之后)
Service其实是一个可执行程序,以service开头的脚本,在特定选项的约束下会被init程序启动或者重启(Service可以在配置中指定是否需要在退出时重启,这样当Service出现crash时就可以有机会复原)
脚本格式如下
service [ ]*
可用选项如下,也就是上面Service所用到的< option>
# Copyright (C) 2012 The Android Open Source Project
#
# IMPORTANT: Do not create world writable files or directories.
# This is a common source of Android security bugs.
#
"【import 一个init配置文件,扩展当前配置。】"
import /init.environ.rc
import /init.usb.rc
import /init.${ro.hardware}.rc
import /init.${ro.zygote}.rc
import /init.trace.rc
"【触发条件early-init,在early-init阶段调用以下行】"
on early-init
# Set init and its forked children's oom_adj.
write /proc/1/oom_score_adj -1000
"【打开路径为的一个文件,并写入一个或多个字符串】"
# Apply strict SELinux checking of PROT_EXEC on mmap/mprotect calls.
write /sys/fs/selinux/checkreqprot 0
# Set the security context for the init process.
# This should occur before anything else (e.g. ueventd) is started.
"【这段脚本的意思是init进程启动之后就马上调用函数setcon将自己的安全上下文设置为“u:r:init:s0”,即将init进程的domain指定为init。】"
setcon u:r:init:s0
# Set the security context of /adb_keys if present.
"【恢复指定文件到file_contexts配置中指定的安全上线文环境】"
restorecon /adb_keys
"【执行start ueventd的命令。ueventd是一个service后面有定义】 "
start ueventd
"【mkdir [mode] [owner] [group] //创建一个目录,可以选择性地指定mode、owner以及group。如果没有指定,默认的权限为755,并属于root用户和root组。】"
# create mountpoints
mkdir /mnt 0775 root system
on init
"【设置系统时钟的基准,比如0代表GMT,即以格林尼治时间为准】"
sysclktz 0
"【设置kernel日志等级】"
loglevel 6 ####
write /proc/bootprof "INIT: on init start" ####
"【symlink //创建一个指向的软连接。】"
# Backward compatibility
symlink /system/etc /etc
symlink /sys/kernel/debug /d
# Right now vendor lives on the same filesystem as system,
# but someday that may change.
symlink /system/vendor /vendor
"【创建一个目录,可以选择性地指定mode、owner以及group。】"
# Create cgroup mount point for cpu accounting
mkdir /acct
mount cgroup none /acct cpuacct
mkdir /acct/uid
"【mount [ ] //在目录挂载指定的设备。 可以是以 mtd@name 的形式指定一个mtd块设备。包括 ro、rw、remount、noatime、 ...】"
# Create cgroup mount point for memory
mount tmpfs none /sys/fs/cgroup mode=0750,uid=0,gid=1000
mkdir /sys/fs/cgroup/memory 0750 root system
mount cgroup none /sys/fs/cgroup/memory memory
write /sys/fs/cgroup/memory/memory.move_charge_at_immigrate 1
"【chown //改变文件的所有者和组。】"
"【后面的一些行因为类似,就省略了】"
.....
# Healthd can trigger a full boot from charger mode by signaling this
# property when the power button is held.
on property:sys.boot_from_charger_mode=1
"【停止指定类别服务类下的所有已运行的服务】"
class_stop charger
"【触发一个事件,将该action排在某个action之后(用于Action排队)】"
trigger late-init
# Load properties from /system/ + /factory after fs mount.
on load_all_props_action
"【从/system,/vendor加载属性。默认包含在init.rc】"
load_all_props
# Indicate to fw loaders that the relevant mounts are up.
on firmware_mounts_complete
"【删除指定路径下的文件】"
rm /dev/.booting
# Mount filesystems and start core system services.
on late-init
"【触发一个事件。用于将一个action与另一个 action排列。】"
trigger early-fs
trigger fs
trigger post-fs
trigger post-fs-data
# Load properties from /system/ + /factory after fs mount. Place
# this in another action so that the load will be scheduled after the prior
# issued fs triggers have completed.
trigger load_all_props_action
# Remove a file to wake up anything waiting for firmware.
trigger firmware_mounts_complete
trigger early-boot
trigger boot
on post-fs
...
"【一些创造目录,建立链接,更改权限的操作,这里省略】"
on post-fs-data
...
"【一些创造目录,建立链接,更改权限的操作,这里省略】"
"【恢复指定文件到file_contexts配置中指定的安全上线文环境】"
restorecon /data/mediaserver
"【将系统属性的值设置为,即以键值对的方式设置系统属性】"
# Reload policy from /data/security if present.
setprop selinux.reload_policy 1
"【以递归的方式恢复指定目录到file_contexts配置中指定的安全上下文中】"
# Set SELinux security contexts on upgrade or policy update.
restorecon_recursive /data
# If there is no fs-post-data action in the init..rc file, you
# must uncomment this line, otherwise encrypted filesystems
# won't work.
# Set indication (checked by vold) that we have finished this action
#setprop vold.post_fs_data_done 1
on boot
"【初始化网络】"
# basic network init
ifup lo
"【设置主机名为localhost】"
hostname localhost
"【设置域名localdomain】"
domainname localdomain
"【设置资源限制】"
# set RLIMIT_NICE to allow priorities from 19 to -20
setrlimit 13 40 40
"【这里省略了一些chmod,chown,等操作,不多解释】"
...
# Define default initial receive window size in segments.
setprop net.tcp.default_init_rwnd 60
"【重启core服务】"
class_start core
on nonencrypted
class_start main
class_start late_start
on property:vold.decrypt=trigger_default_encryption
start defaultcrypto
on property:vold.decrypt=trigger_encryption
start surfaceflinger
start encrypt
on property:sys.init_log_level=*
loglevel ${sys.init_log_level}
on charger
class_start charger
on property:vold.decrypt=trigger_reset_main
class_reset main
on property:vold.decrypt=trigger_load_persist_props
load_persist_props
on property:vold.decrypt=trigger_post_fs_data
trigger post-fs-data
on property:vold.decrypt=trigger_restart_min_framework
class_start main
on property:vold.decrypt=trigger_restart_framework
class_start main
class_start late_start
on property:vold.decrypt=trigger_shutdown_framework
class_reset late_start
class_reset main
on property:sys.powerctl=*
powerctl ${sys.powerctl}
# system server cannot write to /proc/sys files,
# and chown/chmod does not work for /proc/sys/ entries.
# So proxy writes through init.
on property:sys.sysctl.extra_free_kbytes=*
write /proc/sys/vm/extra_free_kbytes ${sys.sysctl.extra_free_kbytes}
# "tcp_default_init_rwnd" Is too long!
on property:sys.sysctl.tcp_def_init_rwnd=*
write /proc/sys/net/ipv4/tcp_default_init_rwnd ${sys.sysctl.tcp_def_init_rwnd}
"【守护进程】"
## Daemon processes to be run by init.
##
service ueventd /sbin/ueventd
class core
critical
seclabel u:r:ueventd:s0
"【日志服务进程】"
service logd /system/bin/logd
class core
socket logd stream 0666 logd logd
socket logdr seqpacket 0666 logd logd
socket logdw dgram 0222 logd logd
seclabel u:r:logd:s0
"【Healthd是android4.4之后提出来的一种中介模型,该模型向下监听来自底层的电池事件,向上传递电池数据信息给Framework层的BatteryService用以计算电池电量相关状态信息】"
service healthd /sbin/healthd
class core
critical
seclabel u:r:healthd:s0
"【控制台进程】"
service console /system/bin/sh
"【为当前service设定一个类别.相同类别的服务将会同时启动或者停止,默认类名是default】"
class core
"【服务需要一个控制台】"
console
"【服务不会自动启动,必须通过服务名显式启动】"
disabled
"【在执行此服务之前切换用户名,当前默认的是root.自Android M开始,即使它要求linux capabilities,也应该使用该选项.很明显,为了获得该功能,进程需要以root用户运行】"
user shell
seclabel u:r:shell:s0
on property:ro.debuggable=1
start console
# 启动adbd服务进程
service adbd /sbin/adbd --root_seclabel=u:r:su:s0
class core
"【创建一个unix域下的socket,其被命名/dev/socket/. 并将其文件描述符fd返回给服务进程.其中,type必须为dgram,stream或者seqpacke,user和group默认是0.seclabel是该socket的SELLinux的安全上下文环境,默认是当前service的上下文环境,通过seclabel指定】"
socket adbd stream 660 system system
disabled
seclabel u:r:adbd:s0
# adbd on at boot in emulator
on property:ro.kernel.qemu=1
start adbd
"【内存管理服务,内存不够释放内存】"
service lmkd /system/bin/lmkd
class core
critical
socket lmkd seqpacket 0660 system system
"【ServiceManager是一个守护进程,它维护着系统服务和客户端的binder通信。
在Android系统中用到最多的通信机制就是Binder,Binder主要由Client、Server、ServiceManager和Binder驱动程序组成。其中Client、Service和ServiceManager运行在用户空间,而Binder驱动程序运行在内核空间。核心组件就是Binder驱动程序了,而ServiceManager提供辅助管理的功能,无论是Client还是Service进行通信前首先要和ServiceManager取得联系。而ServiceManager是一个守护进程,负责管理Server并向Client提供查询Server的功能。】"
service servicemanager /system/bin/servicemanager
class core
user system
group system
critical
onrestart restart healthd
"【servicemanager 服务启动时会重启zygote服务】"
onrestart restart zygote
onrestart restart media
onrestart restart surfaceflinger
onrestart restart drm
"【Vold是Volume Daemon的缩写,它是Android平台中外部存储系统的管控中心,是管理和控制Android平台外部存储设备的后台进程】"
service vold /system/bin/vold
class core
socket vold stream 0660 root mount
ioprio be 2
"【Netd是Android系统中专门负责网络管理和控制的后台daemon程序】"
service netd /system/bin/netd
class main
socket netd stream 0660 root system
socket dnsproxyd stream 0660 root inet
socket mdns stream 0660 root system
socket fwmarkd stream 0660 root inet
"【debuggerd是一个daemon进程,在系统启动时随着init进程启动。主要负责将进程运行时的信息dump到文件或者控制台中】"
service debuggerd /system/bin/debuggerd
class main
service debuggerd64 /system/bin/debuggerd64
class main
"【Android RIL (Radio Interface Layer)提供了Telephony服务和Radio硬件之间的抽象层】"
# for using TK init.modem.rc rild-daemon setting
#service ril-daemon /system/bin/rild
# class main
# socket rild stream 660 root radio
# socket rild-debug stream 660 radio system
# user root
# group radio cache inet misc audio log
"【提供系统 范围内的surface composer功能,它能够将各种应用 程序的2D、3D surface进行组合。】"
service surfaceflinger /system/bin/surfaceflinger
class core
user system
group graphics drmrpc
onrestart restart zygote
"【DRM可以直接访问DRM clients的硬件。DRM驱动用来处理DMA,内存管理,资源锁以及安全硬件访问。为了同时支持多个3D应用,3D图形卡硬件必须作为一个共享资源,因此需要锁来提供互斥访问。DMA传输和AGP接口用来发送图形操作的buffers到显卡硬件,因此要防止客户端越权访问显卡硬件。】"
#make sure drm server has rights to read and write sdcard ####
service drm /system/bin/drmserver
class main
user drm
# group drm system inet drmrpc ####
group drm system inet drmrpc sdcard_r ####
"【媒体服务,无需多说】"
service media /system/bin/mediaserver
class main
user root ####
# google default ####
# user media ####
group audio camera inet net_bt net_bt_admin net_bw_acct drmrpc mediadrm media sdcard_r system net_bt_stack ####
# google default ####
# group audio camera inet net_bt net_bt_admin net_bw_acct drmrpc mediadrm ####
ioprio rt 4
"【设备加密相关服务】"
# One shot invocation to deal with encrypted volume.
service defaultcrypto /system/bin/vdc --wait cryptfs mountdefaultencrypted
disabled
"【当服务退出时,不重启该服务】"
oneshot
# vold will set vold.decrypt to trigger_restart_framework (default
# encryption) or trigger_restart_min_framework (other encryption)
# One shot invocation to encrypt unencrypted volumes
service encrypt /system/bin/vdc --wait cryptfs enablecrypto inplace default
disabled
oneshot
# vold will set vold.decrypt to trigger_restart_framework (default
# encryption)
"【开机动画服务】"
service bootanim /system/bin/bootanimation
class core
user graphics
# group graphics audio ####
group graphics media audio ####
disabled
oneshot
"【在Android系统中,PackageManagerService用于管理系统中的所有安装包信息及应用程序的安装卸载,但是应用程序的安装与卸载并非PackageManagerService来完成,而是通过PackageManagerService来访问installd服务来执行程序包的安装与卸载的。】"
service installd /system/bin/installd
class main
socket installd stream 600 system system
service flash_recovery /system/bin/install-recovery.sh
class main
seclabel u:r:install_recovery:s0
oneshot
"【相关的服务】"
service racoon /system/bin/racoon
class main
socket racoon stream 600 system system
# IKE uses UDP port 500. Racoon will setuid to after binding the port.
group net_admin inet
disabled
oneshot
"【android中有mtpd命令可以连接】"
service mtpd /system/bin/mtpd
class main
socket mtpd stream 600 system system
user
group net_admin inet net_raw
disabled
oneshot
service keystore /system/bin/keystore /data/misc/keystore
class main
user keystore
group keystore drmrpc
"【可以用dumpstate 获取设备的各种信息】"
service dumpstate /system/bin/dumpstate -s
class main
socket dumpstate stream 0660 shell log
disabled
oneshot
"【mdnsd 是多播 DNS 和 DNS 服务发现的守护程序。】"
service mdnsd /system/bin/mdnsd
class main
user mdnsr
group inet net_raw
socket mdnsd stream 0660 mdnsr inet
disabled
oneshot
"【触发关机流程继续往下走】"
service pre-recovery /system/bin/uncrypt
class main
disabled
"【当服务退出时,不重启该服务】"
oneshot
启动顺序是on early-init -> init -> late-init -> boot,接下来就是各种服务的启动
在Android中,zygote是整个系统创建新进程的核心进程。在init进程启动后就会创建zygote进程;zygote进程在内部会先启动Dalvik虚拟机,继而加载一些必要的系统资源和系统类,最后进入一种监听状态。在之后的运作中,当其他系统模块(比如AMS)希望创建新进程时,只需向zygote进程发出请求,zygote进程监听到该请求后,会相应地fork出新的进程,于是这个新进程在初生之时,就先天具有了自己的Dalvik虚拟机以及系统资源
其实在早期的Android版本中,Zygote的启动命令直接是写在init.rc中的,但是随着硬件的不断升级换代,Android系统也要面对32位和64位机器同时存在的情况,所以对Zygote启动也需要根据不同情况对待
在init.rc顶部可以看到有这么一句话
import /init.${ro.zygote}.rc
这里会根据系统属性ro.zygote的值去加载不同的描述Zygote的rc脚本,比如
以init.zygote64_32.rc为例
service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
class main
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart audioserver
onrestart restart cameraserver
onrestart restart media
onrestart restart netd
writepid /dev/cpuset/foreground/tasks
service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary
class main
socket zygote_secondary stream 660 root system
onrestart restart zygote
writepid /dev/cpuset/foreground/tasks
如上,可以看到服务名(进程名)是zygote,对应的可执行程序是app_processXX,而且还创建了一个名为zygote的unix domain socket,类型是stream,这个socket是为了后面IPC所用;上面可以看到还有一个zygote_secondary的进程,其实这是为了适配不同的abi型号
其中Zygote进程能够重启的地方有
接下来看看zygote启动过程,zygote对应的可执行文件就是/system/bin/app_processXX,也就是说系统启动时会执行到这个可执行文件的main()函数里
int main(int argc, char* const argv[])
{
//Android运行时环境,传到的参数argv为“-Xzygote /system/bin --zygote --start-system-server”
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
argc--; argv++; //忽略第一个参数
int i;
for (i = 0; i < argc; i++) {
if (argv[i][0] != '-') {
break;
}
if (argv[i][1] == '-' && argv[i][2] == 0) {
++i;
break;
}
runtime.addOption(strdup(argv[i]));
}
//参数解析
bool zygote = false;
bool startSystemServer = false;
bool application = false;
String8 niceName;
String8 className;
++i;
while (i < argc) {
const char* arg = argv[i++];
if (strcmp(arg, "--zygote") == 0) {
zygote = true;
//--zygote表示当前进程用于承载zygote
//对于64位系统nice_name为zygote64; 32位系统为zygote
niceName = ZYGOTE_NICE_NAME;
} else if (strcmp(arg, "--start-system-server") == 0) {
//是否需要启动system server
startSystemServer = true;
} else if (strcmp(arg, "--application") == 0) {
//启动进入独立的程序模式
application = true;
} else if (strncmp(arg, "--nice-name=", 12) == 0) {
//niceName 为当前进程别名,区别abi型号
niceName.setTo(arg + 12);
} else if (strncmp(arg, "--", 2) != 0) {
className.setTo(arg);
break;
} else {
--i;
break;
}
}
Vector args;
if (!className.isEmpty()) {
// 运行application或tool程序
args.add(application ? String8("application") : String8("tool"));
runtime.setClassNameAndArgs(className, argc - i, argv + i);
} else {
//进入zygote模式,创建 /data/dalvik-cache路径
maybeCreateDalvikCache();
if (startSystemServer) {
args.add(String8("start-system-server"));
}
char prop[PROP_VALUE_MAX];
if (property_get(ABI_LIST_PROPERTY, prop, NULL) == 0) {
return 11;
}
String8 abiFlag("--abi-list=");
abiFlag.append(prop);
args.add(abiFlag);
for (; i < argc; ++i) {
args.add(String8(argv[i]));
}
}
//设置进程名
if (!niceName.isEmpty()) {
runtime.setArgv0(niceName.string());
set_process_name(niceName.string());
}
if (zygote) {
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
} else if (className) {
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
} else {
//没有指定类名或zygote,参数错误
return 10;
}
}
根据传入参数的不同可以有两种启动方式,一个是 “com.android.internal.os.RuntimeInit”, 另一个是 ”com.android.internal.os.ZygoteInit", 对应RuntimeInit 和 ZygoteInit 两个类, 这两个类的主要区别在于Java端,可以明显看出,ZygoteInit 相比 RuntimeInit 多做了很多事情,比如说 “preload", “gc” 等等。但是在Native端,他们都做了相同的事, startVM() 和 startReg()
在当前场景中,init.rc指定了–zygote选项,并且args有添加start-system-server值,所以接下来执行
void AndroidRuntime::start(const char* className, const Vector& options, bool zygote)
{
static const String8 startSystemServer("start-system-server");
for (size_t i = 0; i < options.size(); ++i) {
if (options[i] == startSystemServer) {
const int LOG_BOOT_PROGRESS_START = 3000;
}
}
const char* rootDir = getenv("ANDROID_ROOT");
if (rootDir == NULL) {
rootDir = "/system";
if (!hasDir("/system")) {
return;
}
setenv("ANDROID_ROOT", rootDir, 1);
}
JniInvocation jni_invocation;
jni_invocation.Init(NULL);
JNIEnv* env;
// 虚拟机创建,主要篇幅是关于虚拟机参数的设置
if (startVm(&mJavaVM, &env, zygote) != 0) {
return;
}
onVmCreated(env);
// JNI方法注册
if (startReg(env) < 0) {
return;
}
jclass stringClass;
jobjectArray strArray;
jstring classNameStr;
//等价 strArray= new String[options.size() + 1];
stringClass = env->FindClass("java/lang/String");
strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL);
//等价 strArray[0] = "com.android.internal.os.ZygoteInit"
classNameStr = env->NewStringUTF(className);
env->SetObjectArrayElement(strArray, 0, classNameStr);
//等价 strArray[1] = "start-system-server";
// strArray[2] = "--abi-list=xxx";
//其中xxx为系统响应的cpu架构类型,比如arm64-v8a.
for (size_t i = 0; i < options.size(); ++i) {
jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
env->SetObjectArrayElement(strArray, i + 1, optionsStr);
}
//将"com.android.internal.os.ZygoteInit"转换为"com/android/internal/os/ZygoteInit"
char* slashClassName = toSlashClassName(className);
//找到Zygoteinit类
jclass startClass = env->FindClass(slashClassName);
if (startClass == NULL) {
...
} else {
//找到这个类后就继续找成员函数main方法的Mehtod ID
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
// 通过反射调用ZygoteInit.main()方法
env->CallStaticVoidMethod(startClass, startMeth, strArray);
}
//释放相应对象的内存空间
free(slashClassName);
mJavaVM->DetachCurrentThread();
mJavaVM->DestroyJavaVM();
}
int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote)
{
// JNI检测功能,用于native层调用jni函数时进行常规检测,比较弱字符串格式是否符合要求,资源是否正确释放。该功能一般用于早期系统调试或手机Eng版,对于User版往往不会开启,引用该功能比较消耗系统CPU资源,降低系统性能。
bool checkJni = false;
property_get("dalvik.vm.checkjni", propBuf, "");
if (strcmp(propBuf, "true") == 0) {
checkJni = true;
} else if (strcmp(propBuf, "false") != 0) {
property_get("ro.kernel.android.checkjni", propBuf, "");
if (propBuf[0] == '1') {
checkJni = true;
}
}
if (checkJni) {
addOption("-Xcheck:jni");
}
//虚拟机产生的trace文件,主要用于分析系统问题,路径默认为/data/anr/traces.txt
parseRuntimeOption("dalvik.vm.stack-trace-file", stackTraceFileBuf, "-Xstacktracefile:");
//对于不同的软硬件环境,这些参数往往需要调整、优化,从而使系统达到最佳性能
parseRuntimeOption("dalvik.vm.heapstartsize", heapstartsizeOptsBuf, "-Xms", "4m");
parseRuntimeOption("dalvik.vm.heapsize", heapsizeOptsBuf, "-Xmx", "16m");
parseRuntimeOption("dalvik.vm.heapgrowthlimit", heapgrowthlimitOptsBuf, "-XX:HeapGrowthLimit=");
parseRuntimeOption("dalvik.vm.heapminfree", heapminfreeOptsBuf, "-XX:HeapMinFree=");
parseRuntimeOption("dalvik.vm.heapmaxfree", heapmaxfreeOptsBuf, "-XX:HeapMaxFree=");
parseRuntimeOption("dalvik.vm.heaptargetutilization",
heaptargetutilizationOptsBuf, "-XX:HeapTargetUtilization=");
...
//preloaded-classes文件内容是由WritePreloadedClassFile.java生成的,
//在ZygoteInit类中会预加载工作将其中的classes提前加载到内存,以提高系统性能
if (!hasFile("/system/etc/preloaded-classes")) {
return -1;
}
//初始化虚拟机
if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
ALOGE("JNI_CreateJavaVM failed\n");
return -1;
}
}
int AndroidRuntime::startReg(JNIEnv* env)
{
//设置线程创建方法为javaCreateThreadEtc
androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);
env->PushLocalFrame(200);
//进程JNI方法的注册
if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
env->PopLocalFrame(NULL);
return -1;
}
env->PopLocalFrame(NULL);
return 0;
}
总结一下Zygote native 进程做了哪些主要工作:
这就开始进入java层了
/frameworks/base/core/java/com/android/internal/os/ZygoteInit.java
public static void main(String argv[]) {
try {
RuntimeInit.enableDdms(); //开启DDMS功能
SamplingProfilerIntegration.start();
boolean startSystemServer = false;
String socketName = "zygote";
String abiList = null;
for (int i = 1; i < argv.length; i++) {
if ("start-system-server".equals(argv[i])) {
startSystemServer = true;
} else if (argv[i].startsWith(ABI_LIST_ARG)) {
abiList = argv[i].substring(ABI_LIST_ARG.length());
} else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
socketName = argv[i].substring(SOCKET_NAME_ARG.length());
} else {
throw new RuntimeException("Unknown command line argument: " + argv[i]);
}
}
...
registerZygoteSocket(socketName); //为Zygote注册socket
preload(); // 预加载类和资源
SamplingProfilerIntegration.writeZygoteSnapshot();
gcAndFinalize(); //GC操作
if (startSystemServer) {
startSystemServer(abiList, socketName);//启动system_server
}
runSelectLoop(abiList); //进入循环模式
closeServerSocket();
} catch (MethodAndArgsCaller caller) {
caller.run(); //启动system_server中会讲到。
} catch (RuntimeException ex) {
closeServerSocket();
throw ex;
}
}
private static void registerZygoteSocket(String socketName) {
if (sServerSocket == null) {
int fileDesc;
final String fullSocketName = ANDROID_SOCKET_PREFIX + socketName;
try {
String env = System.getenv(fullSocketName);
fileDesc = Integer.parseInt(env);
} catch (RuntimeException ex) {
...
}
try {
FileDescriptor fd = new FileDescriptor();
fd.setInt$(fileDesc); //设置文件描述符
sServerSocket = new LocalServerSocket(fd); //创建Socket的本地服务端
} catch (IOException ex) {
...
}
}
}
在这里就是实例化一个LocalServerSocket,这样zygote就可以作为服务端,不断的获取其它进程发送过来的请求
static void preload() {
//预加载位于/system/etc/preloaded-classes文件中的类
preloadClasses();
//预加载资源,包含drawable和color资源
preloadResources();
//预加载OpenGL
preloadOpenGL();
//通过System.loadLibrary()方法,
//预加载"android","compiler_rt","jnigraphics"这3个共享库
preloadSharedLibraries();
//预加载 文本连接符资源
preloadTextResources();
//仅用于zygote进程,用于内存共享的进程
WebViewFactory.prepareWebViewInZygote();
}
执行Zygote进程的初始化,对于类加载,采用反射机制Class.forName()方法来加载。对于资源加载,主要是 com.android.internal.R.array.preloaded_drawables和com.android.internal.R.array.preloaded_color_state_lists,在应用程序中以com.android.internal.R.xxx开头的资源,便是此时由Zygote加载到内存的
private static void runSelectLoop(String abiList) throws MethodAndArgsCaller {
ArrayList fds = new ArrayList();
ArrayList peers = new ArrayList();
//sServerSocket是socket通信中的服务端,即zygote进程。保存到fds[0]
fds.add(sServerSocket.getFileDescriptor());
peers.add(null);
while (true) {
StructPollfd[] pollFds = new StructPollfd[fds.size()];
for (int i = 0; i < pollFds.length; ++i) {
pollFds[i] = new StructPollfd();
pollFds[i].fd = fds.get(i);
pollFds[i].events = (short) POLLIN;
}
try {
//处理轮询状态,当pollFds有事件到来则往下执行,否则阻塞在这里
Os.poll(pollFds, -1);
} catch (ErrnoException ex) {
...
}
for (int i = pollFds.length - 1; i >= 0; --i) {
//采用I/O多路复用机制,当接收到客户端发出连接请求 或者数据处理请求到来,则往下执行;
// 否则进入continue,跳出本次循环。
if ((pollFds[i].revents & POLLIN) == 0) {
continue;
}
if (i == 0) {
//即fds[0],代表的是sServerSocket,则意味着有客户端连接请求;
// 则创建ZygoteConnection对象,并添加到fds。
ZygoteConnection newPeer = acceptCommandPeer(abiList);
peers.add(newPeer);
fds.add(newPeer.getFileDesciptor()); //添加到fds.
} else {
//i>0,则代表通过socket接收来自对端的数据,并执行相应操作
boolean done = peers.get(i).runOnce();
if (done) {
peers.remove(i);
fds.remove(i); //处理完则从fds中移除该文件描述符
}
}
}
}
}
private static ZygoteConnection acceptCommandPeer(String abiList) {
try {
return new ZygoteConnection(sServerSocket.accept(), abiList);
} catch (IOException ex) {
...
}
}
boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {
String args[];
Arguments parsedArgs = null;
FileDescriptor[] descriptors;
try {
//读取socket客户端发送过来的参数列表
args = readArgumentList();
descriptors = mSocket.getAncillaryFileDescriptors();
} catch (IOException ex) {
...
return true;
}
...
try {
//将binder客户端传递过来的参数,解析成Arguments对象格式
parsedArgs = new Arguments(args);
...
pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids,
parsedArgs.debugFlags, rlimits, parsedArgs.mountExternal, parsedArgs.seInfo,
parsedArgs.niceName, fdsToClose, parsedArgs.instructionSet,
parsedArgs.appDataDir);
} catch (Exception e) {
...
}
try {
if (pid == 0) {
//子进程执行
IoUtils.closeQuietly(serverPipeFd);
serverPipeFd = null;
//进入子进程流程
handleChildProc(parsedArgs, descriptors, childPipeFd, newStderr);
return true;
} else {
//父进程执行
IoUtils.closeQuietly(childPipeFd);
childPipeFd = null;
return handleParentProc(pid, descriptors, serverPipeFd, parsedArgs);
}
} finally {
IoUtils.closeQuietly(childPipeFd);
IoUtils.closeQuietly(serverPipeFd);
}
}
接收客户端发送过来的connect()操作,Zygote作为服务端执行accept()操作。 再后面客户端调用write()写数据,Zygote进程调用read()读数据。
没有连接请求时会进入休眠状态,当有创建新进程的连接请求时,唤醒Zygote进程,创建Socket通道ZygoteConnection,然后执行ZygoteConnection的runOnce()方法。
system server进程和zygote进程可以说是Android世界中的两大最重要的进程,离开其中之一基本上系统就玩完了;基本上在Java Framework中的大多数服务都是在system server进程中一个线程的方式存在的,如下:
system server进程也是由zygote进程fork出来的,在上面的ZygoteInit.main方法中有如下代码
public static void main(String argv[]) {
try {
if (startSystemServer) {
startSystemServer(abiList, socketName);//启动system_server
}
} catch (MethodAndArgsCaller caller) {
caller.run(); //这一步很重要,接下来会讲到
} catch (RuntimeException ex) {
closeServerSocket();
throw ex;
}
}
private static boolean startSystemServer(String abiList, String socketName)
throws MethodAndArgsCaller, RuntimeException {
...
//参数准备
String args[] = {
"--setuid=1000",
"--setgid=1000",
"--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1032,3001,3002,3003,3006,3007",
"--capabilities=" + capabilities + "," + capabilities,
"--nice-name=system_server",
"--runtime-args",
"com.android.server.SystemServer",
};
ZygoteConnection.Arguments parsedArgs = null;
int pid;
try {
//用于解析参数,生成目标格式
parsedArgs = new ZygoteConnection.Arguments(args);
ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);
// fork子进程,该进程是system_server进程
pid = Zygote.forkSystemServer(
parsedArgs.uid, parsedArgs.gid,
parsedArgs.gids,
parsedArgs.debugFlags,
null,
parsedArgs.permittedCapabilities,
parsedArgs.effectiveCapabilities);
} catch (IllegalArgumentException ex) {
throw new RuntimeException(ex);
}
//进入子进程system_server
if (pid == 0) {
//第二个zygote进程
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
// 完成system_server进程剩余的工作
handleSystemServerProcess(parsedArgs);
}
return true;
}
这个方法先准备参数,然后fork新进程,对于有两个zygote进程情况,需等待第2个zygote创建完成
public static int forkSystemServer(int uid, int gid, int[] gids, int debugFlags,
int[][] rlimits, long permittedCapabilities, long effectiveCapabilities) {
VM_HOOKS.preFork();
// 调用native方法fork system_server进程
int pid = nativeForkSystemServer(
uid, gid, gids, debugFlags, rlimits, permittedCapabilities, effectiveCapabilities);
if (pid == 0) {
Trace.setTracingEnabled(true);
}
VM_HOOKS.postForkCommon();
return pid;
}
nativeForkSystemServer()方法在AndroidRuntime.cpp中注册的,调用com_android_internal_os_Zygote.cpp中的register_com_android_internal_os_Zygote()方法建立native方法的映射关系,所以接下来进入如下方法
static jint com_android_internal_os_Zygote_nativeForkSystemServer(
JNIEnv* env, jclass, uid_t uid, gid_t gid, jintArray gids,
jint debug_flags, jobjectArray rlimits, jlong permittedCapabilities,
jlong effectiveCapabilities) {
//fork子进程
pid_t pid = ForkAndSpecializeCommon(env, uid, gid, gids,
debug_flags, rlimits,
permittedCapabilities, effectiveCapabilities,
MOUNT_EXTERNAL_DEFAULT, NULL, NULL, true, NULL,
NULL, NULL);
if (pid > 0) {
// zygote进程,检测system_server进程是否创建
gSystemServerPid = pid;
int status;
if (waitpid(pid, &status, WNOHANG) == pid) {
//当system_server进程死亡后,重启zygote进程
RuntimeAbort(env);
}
}
return pid;
}
当system_server进程创建失败时,将会重启zygote进程。这里需要注意,对于Android 5.0以上系统,有两个zygote进程,分别是zygote、zygote64两个进程,system_server的父进程,一般来说64位系统其父进程是zygote64进程
static pid_t ForkAndSpecializeCommon(JNIEnv* env, uid_t uid, gid_t gid, jintArray javaGids,
jint debug_flags, jobjectArray javaRlimits,
jlong permittedCapabilities, jlong effectiveCapabilities,
jint mount_external,
jstring java_se_info, jstring java_se_name,
bool is_system_server, jintArray fdsToClose,
jstring instructionSet, jstring dataDir) {
SetSigChldHandler(); //设置子进程的signal信号处理函数
pid_t pid = fork(); //fork子进程
if (pid == 0) {
//进入子进程
DetachDescriptors(env, fdsToClose); //关闭并清除文件描述符
if (!is_system_server) {
//对于非system_server子进程,则创建进程组
int rc = createProcessGroup(uid, getpid());
}
SetGids(env, javaGids); //设置设置group
SetRLimits(env, javaRlimits); //设置资源limit
int rc = setresgid(gid, gid, gid);
rc = setresuid(uid, uid, uid);
SetCapabilities(env, permittedCapabilities, effectiveCapabilities);
SetSchedulerPolicy(env); //设置调度策略
//selinux上下文
rc = selinux_android_setcontext(uid, is_system_server, se_info_c_str, se_name_c_str);
if (se_info_c_str == NULL && is_system_server) {
se_name_c_str = "system_server";
}
if (se_info_c_str != NULL) {
SetThreadName(se_name_c_str); //设置线程名为system_server,方便调试
}
UnsetSigChldHandler(); //设置子进程的signal信号处理函数为默认函数
//等价于调用zygote.callPostForkChildHooks()
env->CallStaticVoidMethod(gZygoteClass, gCallPostForkChildHooks, debug_flags,
is_system_server ? NULL : instructionSet);
...
} else if (pid > 0) {
//进入父进程,即zygote进程
}
return pid;
}
int fork() {
__bionic_atfork_run_prepare();
pthread_internal_t* self = __get_thread();
//fork期间,获取父进程pid,并使其缓存值无效
pid_t parent_pid = self->invalidate_cached_pid();
//系统调用
int result = syscall(__NR_clone, FORK_FLAGS, NULL, NULL, NULL, &(self->tid));
if (result == 0) {
self->set_cached_pid(gettid());
__bionic_atfork_run_child(); //fork完成执行子进程回调方法
} else {
self->set_cached_pid(parent_pid);
__bionic_atfork_run_parent(); //fork完成执行父进程回调方法
}
return result;
}
fork()采用copy on write技术,这是linux创建进程的标准方法,调用一次,返回两次,返回值有3种类型
fork()的主要工作是寻找空闲的进程号pid,然后从父进程拷贝进程信息,例如数据段和代码段,fork()后子进程要执行的代码等。 Zygote进程是所有Android进程的母体,包括system_server和各个App进程。zygote利用fork()方法生成新进程,对于新进程A复用Zygote进程本身的资源,再加上新进程A相关的资源,构成新的应用进程A
fork之后,操作系统会复制一个与父进程完全相同的子进程,虽说是父子关系,但是在操作系统看来,他们更像兄弟关系,这2个进程共享代码空间,但是数据空间是互相独立的,子进程数据空间中的内容是父进程的完整拷贝,指令指针也完全相同,子进程拥有父进程当前运行到的位置(两进程的程序计数器pc值相同,也就是说,子进程是从fork返回处开始执行的),但有一点不同,如果fork成功,子进程中fork的返回值是0,父进程中fork的返回值是子进程的进程号,如果fork不成功,父进程会返回错误。
可以这样想象,2个进程一直同时运行,而且步调一致,在fork之后,他们就开始分别作不同的工作,正如fork原意【分支】一样
到此system_server进程已完成了创建的所有工作,接下来开始了system_server进程的真正工作。在前面startSystemServer()方法中,zygote进程执行完forkSystemServer()后,新创建出来的system_server进程便进入handleSystemServerProcess()方法
private static void handleSystemServerProcess(
ZygoteConnection.Arguments parsedArgs)
throws ZygoteInit.MethodAndArgsCaller {
closeServerSocket(); //关闭父进程zygote复制而来的Socket
Os.umask(S_IRWXG | S_IRWXO);
if (parsedArgs.niceName != null) {
Process.setArgV0(parsedArgs.niceName); //设置当前进程名为"system_server"
}
final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");
if (systemServerClasspath != null) {
//执行dex优化操作
performSystemServerDexOpt(systemServerClasspath);
}
if (parsedArgs.invokeWith != null) {
String[] args = parsedArgs.remainingArgs;
if (systemServerClasspath != null) {
String[] amendedArgs = new String[args.length + 2];
amendedArgs[0] = "-cp";
amendedArgs[1] = systemServerClasspath;
System.arraycopy(parsedArgs.remainingArgs, 0, amendedArgs, 2, parsedArgs.remainingArgs.length);
}
//启动应用进程
WrapperInit.execApplication(parsedArgs.invokeWith,
parsedArgs.niceName, parsedArgs.targetSdkVersion,
VMRuntime.getCurrentInstructionSet(), null, args);
} else {
ClassLoader cl = null;
if (systemServerClasspath != null) {
创建类加载器,并赋予当前线程
cl = new PathClassLoader(systemServerClasspath, ClassLoader.getSystemClassLoader());
Thread.currentThread().setContextClassLoader(cl);
}
//system_server故进入此分支
RuntimeInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
}
}
public static final void zygoteInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "RuntimeInit");
redirectLogStreams(); //重定向log输出
commonInit(); // 通用的一些初始化
nativeZygoteInit(); // zygote初始化
applicationInit(targetSdkVersion, argv, classLoader); // 应用初始化
}
private static final void commonInit() {
// 设置默认的未捕捉异常处理方法
Thread.setDefaultUncaughtExceptionHandler(new UncaughtHandler());
// 设置市区,中国时区为"Asia/Shanghai"
TimezoneGetter.setInstance(new TimezoneGetter() {
@Override
public String getId() {
return SystemProperties.get("persist.sys.timezone");
}
});
TimeZone.setDefault(null);
//重置log配置
LogManager.getLogManager().reset();
new AndroidConfig();
// 设置默认的HTTP User-agent格式( "Dalvik/1.1.0 (Linux; U; Android 6.0.1;LenovoX3c70 Build/LMY47V)"),用于 HttpURLConnection
String userAgent = getDefaultUserAgent();
System.setProperty("http.agent", userAgent);
// 设置socket的tag,用于网络流量统计
NetworkManagementSocketTagger.install();
}
private static void applicationInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
//true代表应用程序退出时不调用AppRuntime.onExit(),否则会在退出前调用
nativeSetExitWithoutCleanup(true);
//设置虚拟机的内存利用率参数值为0.75
VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);
final Arguments args;
try {
args = new Arguments(argv); //解析参数
} catch (IllegalArgumentException ex) {
return;
}
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
//调用startClass的static方法 main() 此处args.startClass为”com.android.server.SystemServer”
invokeStaticMain(args.startClass, args.startArgs, classLoader);
}
private static void invokeStaticMain(String className, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
Class> cl = Class.forName(className, true, classLoader);
...
Method m;
try {
m = cl.getMethod("main", new Class[] { String[].class });
} catch (NoSuchMethodException ex) {
...
} catch (SecurityException ex) {
...
}
//通过抛出异常,回到ZygoteInit.main()。这样做好处是能清空栈帧,提高栈帧利用率
throw new ZygoteInit.MethodAndArgsCaller(m, argv);
}
重点看最后一个方法,通过反射获取SystemServer类的main方法参数,然后抛出MethodAndArgsCaller异常;但是抛出异常后怎么弄呢,我们知道一个方法抛异常,会一直走到调用方法,直到一个方法捕获了异常,这里就是开头讲的,在ZygoteInit.main方法捕获了异常然后去执行
public static void main(String argv[]) {
try {
if (startSystemServer) {
startSystemServer(abiList, socketName);//启动system_server
}
} catch (MethodAndArgsCaller caller) {
caller.run(); //这一步很重要,接下来会讲到
} catch (RuntimeException ex) {
closeServerSocket();
throw ex;
}
}
但是为啥没有直接在startSystemServer()或者上面的方法中直接调用SystemServer类的main方法,而是通过抛异常的方式处理呢?
我们知道,当一个函数抛出异常后,这个异常会依次传递给调用它的函数,直到这个异常被捕获,如果这个异常一直没有被处理,最终就会引起程序的崩溃。
程序都是由一个个函数组成的(除了汇编程序),c/c++/java/…等高级语言编写的应用程序,在执行的时候,他们都拥有自己的栈空间(是一种先进后出的内存区域),用于存放函数的返回地址和函数的临时数据,每调用一个函数时,就会把函数的返回地址和相关数据压入栈中,当一个函数执行完后,就会从栈中弹出,cpu会根据函数的返回地址,执行上一个调用函数的下一条指令。
所以,在抛出异常后,如果异常没有在当前的函数中捕获,那么当前的函数执行就会异常的退出,从应用程序的栈弹出,并将这个异常传递给上一个函数,直到异常被捕获处理,否则,就会引起程序的崩溃。
因此,这里通过抛异常的方式启动主要是清理应用程序栈中ZygoteInit.main以上的函数栈帧,以实现当相应的main函数退出时,能直接退出整个应用程序
public static class MethodAndArgsCaller extends Exception
implements Runnable {
/** 调用的方法 在上面的方法可知是main方法 */
private final Method mMethod;
/** 参数列表 */
private final String[] mArgs;
public MethodAndArgsCaller(Method method, String[] args) {
mMethod = method;
mArgs = args;
}
public void run() {
try {
mMethod.invoke(null, new Object[] { mArgs });
} catch (IllegalAccessException ex) {
throw new RuntimeException(ex);
} catch (InvocationTargetException ex) {
Throwable cause = ex.getCause();
if (cause instanceof RuntimeException) {
throw (RuntimeException) cause;
} else if (cause instanceof Error) {
throw (Error) cause;
}
throw new RuntimeException(ex);
}
}
}
可以看到这里根据传递过来的参数,可知此处通过反射机制调用的是SystemServer.main()方法;到此,总算是进入到了SystemServer类的main()方法
public static void main(String[] args) {
new SystemServer().run();
}
private void run() {
try {
//如果系统时间比1970年早,那就设置为1970
if (System.currentTimeMillis() < EARLIEST_SUPPORTED_TIME) {
SystemClock.setCurrentTimeMillis(EARLIEST_SUPPORTED_TIME);
}
//变更虚拟机的库文件,对于Android 6.0默认采用的是libart.so
SystemProperties.set("persist.sys.dalvik.vm.lib.2", VMRuntime.getRuntime().vmLibrary());
//清除vm内存增长上限,由于启动过程需要较多的虚拟机内存空间
VMRuntime.getRuntime().clearGrowthLimit();
//设置内存的可能有效使用率为0.8
VMRuntime.getRuntime().setTargetHeapUtilization(0.8f);
// 针对部分设备依赖于运行时就产生指纹信息,因此需要在开机完成前已经定义
Build.ensureFingerprintProperty();
//访问环境变量前,需要明确地指定用户
Environment.setUserRequired(true);
// Within the system server, any incoming Bundles should be defused
// to avoid throwing BadParcelableException.
BaseBundle.setShouldDefuse(true);
//确保当前系统进程的binder调用,总是运行在前台优先级(foreground priority)
BinderInternal.disableBackgroundScheduling(true);
// 增加system_server中的binder线程数
BinderInternal.setMaxThreads(sMaxBinderThreads);
// 创建主线程looper 在当前线程运行
android.os.Process.setThreadPriority(
android.os.Process.THREAD_PRIORITY_FOREGROUND);
android.os.Process.setCanSelfBackground(false);
Looper.prepareMainLooper();
//初始化android_servers库
System.loadLibrary("android_servers");
//检测上次关机过程是否失败
performPendingShutdown();
//初始化系统上下文
//初始化系统上下文对象mSystemContext,并设置默认的主题,mSystemContext实际上是一个ContextImpl对象。
//调用ActivityThread.systemMain()的时候,会调用ActivityThread.attach(true),而在attach()里面,则创建了Application对象,并调用了Application.onCreate()。
createSystemContext();
//创建系统服务管理
mSystemServiceManager = new SystemServiceManager(mSystemContext);
LocalServices.addService(SystemServiceManager.class, mSystemServiceManager);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_SYSTEM_SERVER);
}
//启动各种系统服务
try {
//引导服务
startBootstrapServices();
//核心服务
startCoreServices();
//其它服务
startOtherServices();
} catch (Throwable ex) {
throw ex;
} finally {
Trace.traceEnd(Trace.TRACE_TAG_SYSTEM_SERVER);
}
//开启消息循环
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}