Java8 Stream API 之 IntPipeline(二) 源码解析

目录

1、map / flatMap / mapToObj / mapToLong / mapToDouble /asLongStream / asDoubleStream

          2、limit / skip

3、sorted

4、distinct / boxed

5、findFirst / findAny

6、anyMatch / allMatch / noneMatch

7、iterator / spliterator

8、close / onClose


     本篇博客继续上一篇《Java8 Stream API 之 IntPipeline(一) 源码解析》讲解IntStream其他方法的实现细节。

1、map / flatMap / mapToObj / mapToLong / mapToDouble /asLongStream / asDoubleStream

     这几个都是map类方法,都是将流中的元素做适当处理,返回一个新值或者新的流,实现基本一致,如下:

@Override
public final IntStream map(IntUnaryOperator mapper) {
        Objects.requireNonNull(mapper);
        return new StatelessOp(this, StreamShape.INT_VALUE,
                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt(sink) {
                    @Override
                    public void accept(int t) {
                        //将applyAsInt的执行结果传递给下一个流处理动作
                        downstream.accept(mapper.applyAsInt(t));
                    }
                };
            }
        };
    }

@Override
public final IntStream flatMap(IntFunction mapper) {
        return new StatelessOp(this, StreamShape.INT_VALUE,
                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
            @Override
            Sink opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt(sink) {
                    @Override
                    public void begin(long size) {
                        downstream.begin(-1);
                    }

                    @Override
                    public void accept(int t) {
                        //flatMap的入参mapper的返回值是一个IntStream
                        try (IntStream result = mapper.apply(t)) {
                            if (result != null)
                                //如果mapper返回的IntStream流非空,则遍历其中的所有元素,传递给下一个流处理动作
                                result.sequential().forEach(i -> downstream.accept(i));
                        }
                    }
                };
            }
        };
    }

 @Override
    public final  Stream mapToObj(IntFunction mapper) {
        Objects.requireNonNull(mapper);
        return new ReferencePipeline.StatelessOp(this, StreamShape.INT_VALUE,
                                                             StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt(sink) {
                    @Override
                    public void accept(int t) {
                        //apply方法将t转换成对象
                        downstream.accept(mapper.apply(t));
                    }
                };
            }
        };
    }

    @Override
    public final LongStream mapToLong(IntToLongFunction mapper) {
        Objects.requireNonNull(mapper);
        return new LongPipeline.StatelessOp(this, StreamShape.INT_VALUE,
                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt(sink) {
                    @Override
                    public void accept(int t) {
                        //apply方法将t转换成Long
                        downstream.accept(mapper.applyAsLong(t));
                    }
                };
            }
        };
    }

    @Override
    public final DoubleStream mapToDouble(IntToDoubleFunction mapper) {
        Objects.requireNonNull(mapper);
        return new DoublePipeline.StatelessOp(this, StreamShape.INT_VALUE,
                                                       StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt(sink) {
                    @Override
                    public void accept(int t) {
                        //apply方法将t转换成Double
                        downstream.accept(mapper.applyAsDouble(t));
                    }
                };
            }
        };
    }

 @Override
    public final LongStream asLongStream() {
        return new LongPipeline.StatelessOp(this, StreamShape.INT_VALUE,
                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt(sink) {
                    @Override
                    public void accept(int t) {
                        downstream.accept((long) t);
                    }
                };
            }
        };
    }

    @Override
    public final DoubleStream asDoubleStream() {
        return new DoublePipeline.StatelessOp(this, StreamShape.INT_VALUE,
                                                       StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt(sink) {
                    @Override
                    public void accept(int t) {
                        downstream.accept((double) t);
                    }
                };
            }
        };
    }

2、limit / skip

      limit用于限制流中元素的最大个数,skip用于跳过指定个数的元素,其实现如下:

 @Override
 public final IntStream skip(long n) {
        if (n < 0)
            throw new IllegalArgumentException(Long.toString(n));
        if (n == 0) //不需要跳过
            return this;
        else
            //第一个参数表示跳过的元素个数,第二个参数表示允许的元素最大个数,-1表示无限制
            return SliceOps.makeInt(this, n, -1);
    }

@Override
public final IntStream limit(long maxSize) {
        if (maxSize < 0)
            throw new IllegalArgumentException(Long.toString(maxSize));
        return SliceOps.makeInt(this, 0, maxSize);
    }

//SliceOps的实现
public static IntStream makeInt(AbstractPipeline upstream,
                                    long skip, long limit) {
        if (skip < 0)
            throw new IllegalArgumentException("Skip must be non-negative: " + skip);

        return new IntPipeline.StatefulOp(upstream, StreamShape.INT_VALUE,
                                                   flags(limit)) {
             
            //unorderedSkipLimitSpliterator给下面两个方法使用的
            Spliterator.OfInt unorderedSkipLimitSpliterator(
                    Spliterator.OfInt s, long skip, long limit, long sizeIfKnown) {
                if (skip <= sizeIfKnown) {
                    // Use just the limit if the number of elements
                    // to skip is <= the known pipeline size
                    limit = limit >= 0 ? Math.min(limit, sizeIfKnown - skip) : sizeIfKnown - skip;
                    skip = 0;
                }
                return new StreamSpliterators.UnorderedSliceSpliterator.OfInt(s, skip, limit);
            }

            @Override
             Spliterator opEvaluateParallelLazy(PipelineHelper helper,
                                                               Spliterator spliterator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    return new StreamSpliterators.SliceSpliterator.OfInt(
                            (Spliterator.OfInt) helper.wrapSpliterator(spliterator),
                            skip,
                            calcSliceFence(skip, limit));
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    return unorderedSkipLimitSpliterator(
                            (Spliterator.OfInt) helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, Integer[]::new, skip, limit).
                            invoke().spliterator();
                }
            }

            @Override
             Node opEvaluateParallel(PipelineHelper helper,
                                                    Spliterator spliterator,
                                                    IntFunction generator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    // Because the pipeline is SIZED the slice spliterator
                    // can be created from the source, this requires matching
                    // to shape of the source, and is potentially more efficient
                    // than creating the slice spliterator from the pipeline
                    // wrapping spliterator
                    Spliterator s = sliceSpliterator(helper.getSourceShape(), spliterator, skip, limit);
                    return Nodes.collectInt(helper, s, true);
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    Spliterator.OfInt s =  unorderedSkipLimitSpliterator(
                            (Spliterator.OfInt) helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                    // Collect using this pipeline, which is empty and therefore
                    // can be used with the pipeline wrapping spliterator
                    // Note that we cannot create a slice spliterator from
                    // the source spliterator if the pipeline is not SIZED
                    return Nodes.collectInt(this, s, true);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, generator, skip, limit).
                            invoke();
                }
            }

            @Override
            //实现skip和limit的核心方法
            Sink opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt(sink) {
                    long n = skip;
                    long m = limit >= 0 ? limit : Long.MAX_VALUE;

                    @Override
                    public void begin(long size) {
                        //计算遍历的元素个数
                        downstream.begin(calcSize(size, skip, m));
                    }

                    @Override
                    public void accept(int t) {
                        if (n == 0) {
                            //n等于0表示已经跳过指定个数的元素了
                            if (m > 0) {
                                m--;
                                downstream.accept(t);
                            }
                            //m小于等于0表示已经达到最大元素个数限制了
                        }
                        else {
                            n--;
                        }
                    }

                    @Override
                    public boolean cancellationRequested() {
                        //m等于0了需要终止遍历
                        return m == 0 || downstream.cancellationRequested();
                    }
                };
            }
        };
    }

abstract static class StatefulOp extends IntPipeline {
       
        StatefulOp(AbstractPipeline upstream,
                   StreamShape inputShape,
                   int opFlags) {
            super(upstream, opFlags);
            //校验两者流元素的类型是否一致
            assert upstream.getOutputShape() == inputShape;
        }

        @Override
        final boolean opIsStateful() { 
            return true;  //StatelessOp此方法返回false
        }

     
        @Override
        //此方法是父类AbstractPipeline定义的方法,默认实现是抛出UnsupportedOperationException异常
        //StatefulOp的子类必须重写此方法
        abstract  Node opEvaluateParallel(PipelineHelper helper,
                                                         Spliterator spliterator,
                                                         IntFunction generator);
    }

private static long calcSize(long size, long skip, long limit) {
        return size >= 0 ? Math.max(-1, Math.min(size - skip, limit)) : -1;
    }

其中opEvaluateParallelLazy和opEvaluateParallel都是AbstractPipeline定义的方法,其默认实现如下:

  Node opEvaluateParallel(PipelineHelper helper,
                                          Spliterator spliterator,
                                          IntFunction generator) {
        throw new UnsupportedOperationException("Parallel evaluation is not supported");
    }

    
@SuppressWarnings("unchecked")
 Spliterator opEvaluateParallelLazy(PipelineHelper helper,
                                                     Spliterator spliterator) {
        return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator();
    }

 这两方法都是返回在并行环境下使用的线程安全的经过包装的Spliterator和Node实现,其调用链如下:

Java8 Stream API 之 IntPipeline(二) 源码解析_第1张图片

因为涉及的类和并发处理比较复杂,此处就深究了。 

3、sorted

     sorted用于对流中的元素排序,其实现如下:

@Override
public final IntStream sorted() {
        return SortedOps.makeInt(this);
    }

static  IntStream makeInt(AbstractPipeline upstream) {
        return new OfInt(upstream);
    }

private static final class OfInt extends IntPipeline.StatefulOp {
        OfInt(AbstractPipeline upstream) {
            super(upstream, StreamShape.INT_VALUE,
                  StreamOpFlag.IS_ORDERED | StreamOpFlag.IS_SORTED);
        }

        @Override
        //flags是前一个流处理动作的combinedFlags,sink表示前一个流处理动作
        public Sink opWrapSink(int flags, Sink sink) {
            Objects.requireNonNull(sink);
            //如果已经排序了,则直接返回
            if (StreamOpFlag.SORTED.isKnown(flags))
                return sink;
            else if (StreamOpFlag.SIZED.isKnown(flags))
                //如果限定了元素个数
                return new SizedIntSortingSink(sink);
            else
                //如果元素个数未知
                return new IntSortingSink(sink);
        }

        @Override
        public  Node opEvaluateParallel(PipelineHelper helper,
                                                       Spliterator spliterator,
                                                       IntFunction generator) {
            if (StreamOpFlag.SORTED.isKnown(helper.getStreamAndOpFlags())) {
                //如果已排序好
                return helper.evaluate(spliterator, false, generator);
            }
            else {
                Node.OfInt n = (Node.OfInt) helper.evaluate(spliterator, true, generator);
                int[] content = n.asPrimitiveArray();
                //执行并行排序
                Arrays.parallelSort(content);
                //返回排序好的结果
                return Nodes.node(content);
            }
        }
    }

private static abstract class AbstractIntSortingSink extends Sink.ChainedInt {
        protected boolean cancellationWasRequested;

        AbstractIntSortingSink(Sink downstream) {
            super(downstream);
        }

        @Override
        public final boolean cancellationRequested() {
            //父类实现是调用downstream的cancellationWasRequested方法,此处没有调用
            cancellationWasRequested = true;
            return false;
        }
    }


 private static final class SizedIntSortingSink extends AbstractIntSortingSink {
        private int[] array;
        private int offset;

        SizedIntSortingSink(Sink downstream) {
            super(downstream);
        }

        @Override
        public void begin(long size) {
            //size为流中元素的个数
            if (size >= Nodes.MAX_ARRAY_SIZE)
                throw new IllegalArgumentException(Nodes.BAD_SIZE);
            array = new int[(int) size];
        }

        @Override
        public void end() {
            //当所有流元素都通过accept方法传递完成会调用end方法
            //对流中元素做排序处理
            Arrays.sort(array, 0, offset);
            //通知下一个流处理动作开始处理
            downstream.begin(offset);
            if (!cancellationWasRequested) {
                //如果没有请求终止当前流处理
                for (int i = 0; i < offset; i++)
                    //将数组中的流处理动作传递给下一个流
                    downstream.accept(array[i]);
            }
            else {
                //如果下一个流处理动作也终止了则停止处理流元素
                for (int i = 0; i < offset && !downstream.cancellationRequested(); i++)
                    downstream.accept(array[i]);
            }
            //通知下一个流处理动作处理结束
            downstream.end();
            array = null;
        }

        @Override
        public void accept(int t) {
            //上一个流处理动作通过此方法将硫元素传递给当前Sink,注意此时并不会继续向下传递,而是放在array中保存起来了
            array[offset++] = t;
        }
    }

   
private static final class IntSortingSink extends AbstractIntSortingSink {
        //SpinedBuffer的实现跟ArrayList类似,相当于一个会自动扩容的数组
        private SpinedBuffer.OfInt b;

        IntSortingSink(Sink sink) {
            super(sink);
        }

        @Override
        public void begin(long size) {
            if (size >= Nodes.MAX_ARRAY_SIZE)
                throw new IllegalArgumentException(Nodes.BAD_SIZE);
            //初始化b    
            b = (size > 0) ? new SpinedBuffer.OfInt((int) size) : new SpinedBuffer.OfInt();
        }

        @Override
        public void end() {
            int[] ints = b.asPrimitiveArray();
            //执行排序
            Arrays.sort(ints);
            //通知流处理开始
            downstream.begin(ints.length);
            //同上,将数组中排序好的流处理元素传递给下一个流
            if (!cancellationWasRequested) {
                for (int anInt : ints)
                    downstream.accept(anInt);
            }
            else {
                for (int anInt : ints) {
                    if (downstream.cancellationRequested()) break;
                    downstream.accept(anInt);
                }
            }
            //通知流处理结束
            downstream.end();
        }

        @Override
        public void accept(int t) {
            //保存上一个流处理动作传递过来的元素
            b.accept(t);
        }
    }

4、distinct / boxed

 @Override
public final IntStream distinct() {
        //很低效的实现,实际是借助了对象流的distinct实现
        return boxed().distinct().mapToInt(i -> i);
    }

@Override
public final Stream boxed() {
        //转换成对象流
        return mapToObj(Integer::valueOf);
    }

 //ReferencePipeline就是对象流的Stream接口实现
 @Override
public final Stream distinct() {
        return DistinctOps.makeRef(this);
    }

//DistinctOps的实现
static  ReferencePipeline makeRef(AbstractPipeline upstream) {
        return new ReferencePipeline.StatefulOp(upstream, StreamShape.REFERENCE,
                                                      StreamOpFlag.IS_DISTINCT | StreamOpFlag.NOT_SIZED) {

             Node reduce(PipelineHelper helper, Spliterator spliterator) {
                // If the stream is SORTED then it should also be ORDERED so the following will also
                // preserve the sort order
                TerminalOp> reduceOp
                        = ReduceOps.>makeRef(LinkedHashSet::new, LinkedHashSet::add,
                                                                 LinkedHashSet::addAll);
                return Nodes.node(reduceOp.evaluateParallel(helper, spliterator));
            }

            @Override
             Node opEvaluateParallel(PipelineHelper helper,
                                              Spliterator spliterator,
                                              IntFunction generator) {
                if (StreamOpFlag.DISTINCT.isKnown(helper.getStreamAndOpFlags())) {
                    // No-op
                    return helper.evaluate(spliterator, false, generator);
                }
                else if (StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    return reduce(helper, spliterator);
                }
                else {
                    // Holder of null state since ConcurrentHashMap does not support null values
                    AtomicBoolean seenNull = new AtomicBoolean(false);
                    ConcurrentHashMap map = new ConcurrentHashMap<>();
                    TerminalOp forEachOp = ForEachOps.makeRef(t -> {
                        if (t == null)
                            seenNull.set(true);
                        else
                            map.putIfAbsent(t, Boolean.TRUE);
                    }, false);
                    forEachOp.evaluateParallel(helper, spliterator);

                    // If null has been seen then copy the key set into a HashSet that supports null values
                    // and add null
                    Set keys = map.keySet();
                    if (seenNull.get()) {
                        // TODO Implement a more efficient set-union view, rather than copying
                        keys = new HashSet<>(keys);
                        keys.add(null);
                    }
                    return Nodes.node(keys);
                }
            }

            @Override
             Spliterator opEvaluateParallelLazy(PipelineHelper helper, Spliterator spliterator) {
                if (StreamOpFlag.DISTINCT.isKnown(helper.getStreamAndOpFlags())) {
                    // No-op
                    return helper.wrapSpliterator(spliterator);
                }
                else if (StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    // Not lazy, barrier required to preserve order
                    return reduce(helper, spliterator).spliterator();
                }
                else {
                    // Lazy
                    return new StreamSpliterators.DistinctSpliterator<>(helper.wrapSpliterator(spliterator));
                }
            }

            @Override
            Sink opWrapSink(int flags, Sink sink) {
                Objects.requireNonNull(sink);

                if (StreamOpFlag.DISTINCT.isKnown(flags)) {
                    //之前的流处理动作已经去重过了,则直接返回
                    return sink;
                } else if (StreamOpFlag.SORTED.isKnown(flags)) {
                    //如果是一个已经排序好的流
                    return new Sink.ChainedReference(sink) {
                        boolean seenNull;
                        T lastSeen;

                        @Override
                        public void begin(long size) {
                            seenNull = false;
                            lastSeen = null;
                            downstream.begin(-1);
                        }

                        @Override
                        public void end() {
                            seenNull = false;
                            lastSeen = null;
                            downstream.end();
                        }

                        @Override
                        public void accept(T t) {
                            if (t == null) {
                                if (!seenNull) { //如果没有遇到过null
                                    seenNull = true;
                                    downstream.accept(lastSeen = null);
                                }
                                //已经遇到过null了则不做处理
                            } else if (lastSeen == null || !t.equals(lastSeen)) {
                                //如果t是第一个处理的元素或者t跟上一个元素不一样,则将其传递给下一个流
                                //因为是排序好的,所以只可能跟上一个元素重复
                                downstream.accept(lastSeen = t);
                            }
                        }
                    };
                } else {
                    //如果是一个未排序的流
                    return new Sink.ChainedReference(sink) {
                        Set seen;

                        @Override
                        public void begin(long size) {
                            //初始化HashSet
                            seen = new HashSet<>();
                            downstream.begin(-1);
                        }

                        @Override
                        public void end() {
                            seen = null;
                            downstream.end();
                        }

                        @Override
                        public void accept(T t) {
                            if (!seen.contains(t)) {
                                //不包含这个元素,则传递给下一个元素
                                seen.add(t);
                                downstream.accept(t);
                            }
                        }
                    };
                }
            }
        };
    }

5、findFirst / findAny

      findFirst是查找并返回第一个元素,findAny是返回任意一个元素,其实现如下:

@Override
public final OptionalInt findFirst() {
        return evaluate(FindOps.makeInt(true));
    }

    @Override
public final OptionalInt findAny() {
        return evaluate(FindOps.makeInt(false));
    }

public static TerminalOp makeInt(boolean mustFindFirst) {
        return new FindOp<>(mustFindFirst, StreamShape.INT_VALUE, OptionalInt.empty(),
         //最后一个参数sinkSupplier是一个可以通过get方法返回FindSink.OfInt的Supplier
                            OptionalInt::isPresent, FindSink.OfInt::new); 
    }

private static final class FindOp implements TerminalOp {
        private final StreamShape shape;
        final boolean mustFindFirst;
        final O emptyValue;
        final Predicate presentPredicate;
        final Supplier> sinkSupplier;

        FindOp(boolean mustFindFirst,
                       StreamShape shape,
                       O emptyValue,
                       Predicate presentPredicate,
                       Supplier> sinkSupplier) {
            this.mustFindFirst = mustFindFirst;
            this.shape = shape;
            this.emptyValue = emptyValue;
            this.presentPredicate = presentPredicate;
            this.sinkSupplier = sinkSupplier;
        }

        @Override
        public int getOpFlags() {
            //增加IS_SHORT_CIRCUIT标识符,则遍历的过程中如果cancellationRequested方法会true了则会终止遍历
            return StreamOpFlag.IS_SHORT_CIRCUIT | (mustFindFirst ? 0 : StreamOpFlag.NOT_ORDERED);
        }

        @Override
        public StreamShape inputShape() {
            return shape;
        }

        @Override
        //串行执行时 evaluate方法调用此方法
        public  O evaluateSequential(PipelineHelper helper,
                                        Spliterator spliterator) {
            //wrapAndCopyInto返回一个TerminalSink实现,get方法是其父类Supplier接口的方法                            
            O result = helper.wrapAndCopyInto(sinkSupplier.get(), spliterator).get();
            return result != null ? result : emptyValue;
        }

        @Override
        //并行执行时 evaluate方法调用此方法
        public  O evaluateParallel(PipelineHelper helper,
                                         Spliterator spliterator) {
            return new FindTask<>(this, helper, spliterator).invoke();
        }
    }

private static abstract class FindSink implements TerminalSink {
        boolean hasValue;
        T value;

        FindSink() {} // Avoid creation of special accessor

        @Override
        public void accept(T value) {
            if (!hasValue) {
                //如果已经接收了一个元素,则将hasValue置为true
                //注意此时没有向下传递流元素,因为find操作是流终止类操作
                hasValue = true;
                this.value = value;
            }
        }

        @Override
        public boolean cancellationRequested() {
            //父类默认返回false,如果已经接收了一个元素则返回true
            return hasValue;
        }

        /** Specialization of {@code FindSink} for int streams */
        static final class OfInt extends FindSink
                implements Sink.OfInt {
            @Override
            public void accept(int value) {
                //调用父类方法
                accept((Integer) value);
            }

            @Override
            public OptionalInt get() {
                //如果有值则构造一个OptionalInt,否则返回null
                return hasValue ? OptionalInt.of(value) : null;
            }
        }
    }

从其实现可知,两者在串行条件下返回的结果是一样的,且找到一个元素后会终止流元素处理,测试用例如下:

    @Test
    public void test3() throws Exception {
        IntStream stream=IntStream.range(1,10);
        int a=stream.peek(x->{
            System.out.println(x);
//        }).findFirst().getAsInt();
        }).findAny().getAsInt();
        System.out.println(a);
    }

findFirst和findAny的输出是一样的,如下:

Java8 Stream API 之 IntPipeline(二) 源码解析_第2张图片

6、anyMatch / allMatch / noneMatch

      anyMatch表示任意一个匹配返回true,allMatch所有的都匹配返回true,noneMatch没有一个匹配返回true,其实现如下:

@Override
public final boolean anyMatch(IntPredicate predicate) {
        return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ANY));
    }

@Override
public final boolean allMatch(IntPredicate predicate) {
        return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ALL));
    }

@Override
public final boolean noneMatch(IntPredicate predicate) {
        return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.NONE));
    }

//MatchOps的实现
public static TerminalOp makeInt(IntPredicate predicate,
                                                       MatchKind matchKind) {
        Objects.requireNonNull(predicate);
        Objects.requireNonNull(matchKind);
        class MatchSink extends BooleanTerminalSink implements Sink.OfInt {
            MatchSink() {
                super(matchKind);
            }

            @Override
            public void accept(int t) {
                 //stop默认是false
                 //ANY时stopOnPredicateMatches为true,ALL时stopOnPredicateMatches为false
                 //NONE时stopOnPredicateMatches为true,参考后面的MatchKind定义
                if (!stop && predicate.test(t) == matchKind.stopOnPredicateMatches) {
                    stop = true; //变成true,终止遍历
                    //设置处理结果
                    value = matchKind.shortCircuitResult;
                }
            }
        }

        return new MatchOp<>(StreamShape.INT_VALUE, matchKind, MatchSink::new);
    }

private static abstract class BooleanTerminalSink implements Sink {
        boolean stop; //是否停止遍历
        boolean value; //返回的结果

        BooleanTerminalSink(MatchKind matchKind) {
            value = !matchKind.shortCircuitResult;
        }

        public boolean getAndClearState() {
            return value;
        }

        @Override
        public boolean cancellationRequested() {
            return stop;
        }
    }

private static final class MatchOp implements TerminalOp {
        private final StreamShape inputShape;
        final MatchKind matchKind;
        final Supplier> sinkSupplier;

    
        MatchOp(StreamShape shape,
                MatchKind matchKind,
                Supplier> sinkSupplier) {
            this.inputShape = shape;
            this.matchKind = matchKind;
            this.sinkSupplier = sinkSupplier;
        }

        @Override
        public int getOpFlags() {
            //加上IS_SHORT_CIRCUIT标识,如果Sink的cancellationRequested返回true则终止流元素遍历
            return StreamOpFlag.IS_SHORT_CIRCUIT | StreamOpFlag.NOT_ORDERED;
        }

        @Override
        public StreamShape inputShape() {
            return inputShape;
        }

        @Override
        public  Boolean evaluateSequential(PipelineHelper helper,
                                              Spliterator spliterator) {
            //串行处理时调用                                   
            return helper.wrapAndCopyInto(sinkSupplier.get(), spliterator).getAndClearState();
        }

        @Override
        public  Boolean evaluateParallel(PipelineHelper helper,
                                            Spliterator spliterator) {
            //并行处理时调用                                 
            return new MatchTask<>(this, helper, spliterator).invoke();
        }
    }

enum MatchKind {
        /** Do all elements match the predicate? */
        ANY(true, true),

        /** Do any elements match the predicate? */
        ALL(false, false),

        /** Do no elements match the predicate? */
        NONE(true, false);

        private final boolean stopOnPredicateMatches;
        private final boolean shortCircuitResult;

        private MatchKind(boolean stopOnPredicateMatches,
                          boolean shortCircuitResult) {
            this.stopOnPredicateMatches = stopOnPredicateMatches;
            this.shortCircuitResult = shortCircuitResult;
        }
    }

7、iterator / spliterator

     iterator返回流中元素的遍历器,spliterator返回当前流处理关联的Spliterator实现,其实现如下:

@Override
public final PrimitiveIterator.OfInt iterator() {
        return Spliterators.iterator(spliterator());
    }

@Override
public final Spliterator.OfInt spliterator() {
        return adapt(super.spliterator());
    }

public static PrimitiveIterator.OfInt iterator(Spliterator.OfInt spliterator) {
        Objects.requireNonNull(spliterator);
        class Adapter implements PrimitiveIterator.OfInt, IntConsumer {
            boolean valueReady = false;
            int nextElement;

            @Override
            public void accept(int t) {
                //接收一个新的流元素
                valueReady = true; //表示nextElement是否存在,如果被取走则被置为false
                nextElement = t;
            }

            @Override
            public boolean hasNext() {
                if (!valueReady)
                    //tryAdvance会遍历流中的元素,遍历一个后调用上面的accept方法
                    spliterator.tryAdvance(this);
                return valueReady;
            }

            @Override
            public int nextInt() {
                if (!valueReady && !hasNext()) //如果nextElement没有且hasNext返回false,说明没有多余的元素了
                    throw new NoSuchElementException();
                else {
                    valueReady = false;
                    return nextElement;
                }
            }
        }

        return new Adapter();
    }

private static Spliterator.OfInt adapt(Spliterator s) {
        if (s instanceof Spliterator.OfInt) {
            return (Spliterator.OfInt) s;
        }
        else {
            if (Tripwire.ENABLED)
                Tripwire.trip(AbstractPipeline.class,
                              "using IntStream.adapt(Spliterator s)");
            throw new UnsupportedOperationException("IntStream.adapt(Spliterator s)");
        }
    }

8、close / onClose

      onClose表示注册关闭流即执行close时的回调动作,close表示关闭流,注意跟流终止动作关闭流是两码事。

@Override
public void close() {
        linkedOrConsumed = true;
        sourceSupplier = null;
        sourceSpliterator = null;
        if (sourceStage.sourceCloseAction != null) {
            //如果回调动作不为空的话,则执行回调
            Runnable closeAction = sourceStage.sourceCloseAction;
            sourceStage.sourceCloseAction = null;
            closeAction.run();
        }
    }

@Override
@SuppressWarnings("unchecked")
public S onClose(Runnable closeHandler) {
        Objects.requireNonNull(closeHandler);
        Runnable existingHandler = sourceStage.sourceCloseAction;
        sourceStage.sourceCloseAction =
                (existingHandler == null) //如果没有注册关闭时的回调动作则直接赋值,否则调用composeWithExceptions注册多个
                ? closeHandler
                : Streams.composeWithExceptions(existingHandler, closeHandler);
        return (S) this;
    }

static Runnable composeWithExceptions(Runnable a, Runnable b) {
        //返回一个新的Runnable,同时包裹了a和b,a表示已经存在的回调动作,b表示新增的回调动作
        //会保证a先执行,且无论a是否异常,b都会被执行
        return new Runnable() {
            @Override
            public void run() {
                try {
                    a.run();
                }
                catch (Throwable e1) {
                    try {
                        b.run();
                    }
                    catch (Throwable e2) {
                        try {
                            e1.addSuppressed(e2);
                        } catch (Throwable ignore) {}
                    }
                    throw e1;
                }
                b.run();
            }
        };
    }

 

你可能感兴趣的:(java8并发工具类源码解析)