在二维平面上,给定若干个点,求一条直线能够很好的拟合这些点。如图所示。
为什么这个问题很重要?
本文的仿真代码请看我附带的资源。
这是一个线性拟合或者线性回归问题,目的是在二维平面上,找到一条直线来拟合给出的点。
线性拟合有很多方法,每个方法都有自己的目标函数,不同的情况下应该要使用相应的目标函数和相应的方法。每种方法都有其自己的适用范围和意义,每种方法也都有自己的优缺点。
这个问题的复杂程度还不是很大,所以能够通过数学的方法求出解析解。
一般最小二乘是最常用的线性拟合的方法。
一般最小二乘法的目的是找到因变量 y y y与自变量 x x x之间的函数关系 y = f ( x ) y=f(x) y=f(x)。对于本文讨论的为题,可以将点的横坐标看做自变量,将纵坐标看做因变量。然后使用一般最小二乘法找到自变量和因变量之间的函数关系,由这个函数关系可以确定一条直线,这就是拟合出来的直线。
假设给出的若干点的坐标为: ( x 1 , y 1 ) , ( x 2 , y 2 ) ⋯ ( x n , y n ) (x_1,y_1),(x_2,y_2) \cdots (x_n,y_n) (x1,y1),(x2,y2)⋯(xn,yn)。定义纵坐标 y y y的误差 ϵ i \epsilon_i ϵi为真值与观测值之差,定义 y y y的残差 ϵ ^ i \hat{\epsilon}_i ϵ^i为估计值与观测值的差,公式如下:
ϵ i = y i − y i ⋆ \epsilon_i=y_i-y_i^{\star} ϵi=yi−yi⋆
ϵ ^ i = y i − y ^ i \hat{\epsilon}_i=y_i-\hat{y}_i ϵ^i=yi−y^i
一般最小二乘法的目的是使拟合误差(残差和)最小,也就是 min ∑ ϵ ^ i \min \sum \hat{\epsilon}_i min∑ϵ^i ,所以目标函数的形式如下:
J 1 = 1 2 ∑ i = 1 n ϵ ^ i 2 = 1 2 ∑ i = 1 n ( y ^ i − y i ) 2 = 1 2 ( y ^ − y ) T ( y ^ − y ) \bold{J}_1=\dfrac{1}{2}\sum_{i=1}^{n}\hat{\epsilon}_i^2 =\dfrac{1}{2}\sum_{i=1}^{n}(\hat{y}_i-y_i)^2 =\dfrac{1}{2}(\hat{\boldsymbol{y}}-\boldsymbol{y})^T(\hat{\boldsymbol{y}}-\boldsymbol{y}) J1=21i=1∑nϵ^i2=21i=1∑n(y^i−yi)2=21(y^−y)T(y^−y)
其中 y = [ y 1 , y 2 , ⋯ , y n ] T \boldsymbol{y}=[y_1,y_2,\cdots,y_n]^T y=[y1,y2,⋯,yn]T,这里添加的 1 2 \dfrac{1}{2} 21只是为了方便计算。
所以最小二乘法就是找到一组直线的参数,使得目标函数最小。
直线方程使用斜截式直线方程: y = k x + c y=kx+c y=kx+c,所以要求解的直线参数为斜率 k k k和截距 c c c。所以有: y i ^ = k ^ x i + c ^ \hat{y_i}=\hat{k}x_i+\hat{c} yi^=k^xi+c^。写成矩阵形式为:
y ^ = X θ \hat{\bold{y}}=\boldsymbol{X}\boldsymbol{\theta} y^=Xθ
其中, X = [ x 1 1 x 2 1 ⋮ ⋮ x n 1 ] \boldsymbol{X}=\left[\begin{matrix}x_1 & 1 \\x_2 & 1 \\\vdots & \vdots \\x_n & 1 \end{matrix}\right] X=⎣⎢⎢⎢⎡x1x2⋮xn11⋮1⎦⎥⎥⎥⎤, θ = [ k ^ c ^ ] \boldsymbol{\theta}=\left[\begin{matrix}\hat{k} \\\hat{c}\end{matrix}\right] θ=[k^c^],将其带入目标函数 J 1 \boldsymbol{J}_1 J1得:
J 1 = 1 2 ( X θ − y ) T ( X θ − y ) \boldsymbol{J}_1=\dfrac{1}{2}(\boldsymbol{X}\boldsymbol{\theta}-\boldsymbol{y})^T(\boldsymbol{X}\boldsymbol{\theta}-\boldsymbol{y}) J1=21(Xθ−y)T(Xθ−y)
目标函数对 θ \theta θ求导,并令其等于零,得:
∂ ∂ θ J 1 = X T ( X θ − y ) = 0 \dfrac{\partial}{\partial\boldsymbol{\theta}} \boldsymbol{J}_1 = \boldsymbol{X}^T (\boldsymbol{X}\boldsymbol{\theta} -\boldsymbol{y})=0 ∂θ∂J1=XT(Xθ−y)=0
解得:
θ = ( X T X ) − 1 X T y \boldsymbol{\theta}=(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} θ=(XTX)−1XTy
即:
[ k ^ c ^ ] = ( X T X ) − 1 X T y \left[ \begin{matrix} \hat{k} \\ \hat{c} \end{matrix} \right]=(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} [k^c^]=(XTX)−1XTy
从目标函数上看,一般最小二乘法的直观上的理解是:在二维平面上找到一条直线,使得每个点到直线的竖直距离之和最小。也就是说,一般最小二乘优化的是竖直距离,即纵坐标 y y y的误差。
上图中红色线段即为每个点的竖直误差,一般最小二乘法就是找到这样一条直线,使得红色线段的和最小。
一般最小二乘法对异常值很敏感,只要一个奇怪的异常值就可能会改变最后的结果。
从其代数解法的最后结果来看,一般最小二乘法仅使用了点的均值信息和方差信息,所以仅对存在普通噪声的情况下适用,当存在异常值时,一般最小二乘法就无能为力了,此时需要其他的方法来解决。
一般最小二乘法仅考虑了因变量 y y y存在误差的情况,没有考虑自变量 x x x的误差,所以其应用条件有一定的限制。只有当自变量不存在偏差,或者自变量的偏差在一定范围内可以忽略不计时,才比较适用。当自变量和因变量的测量都存在偏差时,一般最小二乘法就不太合适了。
对于本文所讨论的问题:用一条直线拟合平面上的若干点。题目并没有提到这些点的来源,当这些点的横坐标的测量比较精确时,可以使用考虑使用一般最小二乘法。但是当这些点的横纵坐标都存在误差,而且都不能忽略时,一般最小二乘法就不太适用了,这时就必须考虑其他的方法了。
当要拟合的直线是垂直或接近垂直于 x x x轴的时候,就无法求解了。垂直于 x x x轴的直线,斜率无穷大,无法用斜截式直线方程表示。
从可解性的角度考虑,当直线垂直于 x x x轴的时候,矩阵 X T X \boldsymbol{X}^T\boldsymbol{X} XTX是不可逆的,所以无法求出其最小二乘解。当直线接近垂直于 x x x轴的时候,矩阵 X T X \boldsymbol{X}^T\boldsymbol{X} XTX接近奇异,如果直接求逆,也会导致很大的偏差。
所以当拟合的直线垂直或者接近垂直于 x x x轴的时候,是不能用一般最小二乘法进行直线拟合的。
一般最小二乘仅考虑了因变量 y y y存在误差的情况,但是很多情况下,原始点的横纵坐标都会有误差存在。正交方法能够同时考虑自变量 x x x和因变量 y y y的误差。
直线方程用点法式的形式表示,定义拟合直线经过的点坐标为 p 0 = ( x 0 , y 0 ) p_0=(x_0,y_0) p0=(x0,y0),直线的法向量为 v \boldsymbol{v} v,这里我们假设直线的法向量为单位向量。所以可以使用两个向量 ( p 0 , v ) (p_0,\boldsymbol{v}) (p0,v)来表示一条直线,而且是二维平面上的任意直线。
正交回归的目的是点到直线的距离之和最小,也就是点到直线上投影点的距离最短。点到投影点的距离可以用向量 p i = ( p i − p 0 ) \boldsymbol{p}_i=(p_i-p_0) pi=(pi−p0)向直线法向量 v \boldsymbol{v} v方向上的投影的模长来表示。
向 v \boldsymbol{v} v投影的投影矩阵为 v v T \boldsymbol{v}\boldsymbol{v}^T vvT。
所以目标函数可以表示为:
J 2 = 1 2 n ∑ ∣ ∣ v v T ( p i − p 0 ) ∣ ∣ 2 \boldsymbol{J}_2=\dfrac{1}{2n}\sum ||\boldsymbol{v}\boldsymbol{v}^T(p_i-p_0)||^2 J2=2n1∑∣∣vvT(pi−p0)∣∣2
这里的 1 2 n \dfrac{1}{2n} 2n1是为了计算方便。
也可以化简为几种不同的形式:
J 2 = 1 2 n ∑ v T ( p i − p 0 ) ( p i − p 0 ) T v J 2 = 1 2 n ∑ [ v T ( p i − p 0 ) ] 2 \begin{aligned} \boldsymbol{J}_2&=\dfrac{1}{2n}\sum\boldsymbol{v}^T(p_i-p_0) (p_i-p_0)^T\boldsymbol{v}\\ \boldsymbol{J}_2&=\dfrac{1}{2n}\sum [ \boldsymbol{v}^T (p_i-p_0)]^2 \end{aligned} J2J2=2n1∑vT(pi−p0)(pi−p0)Tv=2n1∑[vT(pi−p0)]2
目标函数 J 2 \boldsymbol{J}_2 J2对 p 0 p_0 p0求导,得:
d J 2 d p 0 = d p 0 { 1 2 n ∑ [ v T ( p i − p 0 ) ] 2 } = − v T ( ∑ p i n − p 0 ) v \dfrac{d\boldsymbol{J}_2}{d p_0}=\dfrac{d}{p_0}\{\dfrac{1}{2n}\sum [\boldsymbol{v}^T (p_i-p_0)]^2\}=-\boldsymbol{v}^T(\dfrac{\sum p_i}{n}-p_0)\boldsymbol{v} dp0dJ2=p0d{2n1∑[vT(pi−p0)]2}=−vT(n∑pi−p0)v
令 d J 2 d p 0 = 0 \dfrac{d\boldsymbol{J}_2}{d p_0}=\boldsymbol{0} dp0dJ2=0,得:
v T ( p ˉ − p 0 ) v = 0 \boldsymbol{v}^T(\bar{p}-p_0)\boldsymbol{v}=\boldsymbol{0} vT(pˉ−p0)v=0
其中 p ˉ \bar{p} pˉ为所有拟合点的质心。
因为法向量不是零向量,所以可以得出:
v T ( p ˉ − p 0 ) = 0 \boldsymbol{v}^T(\bar{p}-p_0)=0 vT(pˉ−p0)=0
所以, p ˉ \bar{p} pˉ一定是直线上的一点,所以不妨设 p 0 = p ˉ p_0=\bar{p} p0=pˉ。
此时目标函数可以化简:
J 2 = 1 2 n ∑ v T ( p i − p ˉ ) ( p i − p ˉ ) T v = 1 2 n v T S v \boldsymbol{J}_2=\dfrac{1}{2n}\sum\boldsymbol{v}^T (p_i-\bar{p})(p_i-\bar{p})^T\boldsymbol{v} =\dfrac{1}{2n}\boldsymbol{v}^T\boldsymbol{S}\boldsymbol{v} J2=2n1∑vT(pi−pˉ)(pi−pˉ)Tv=2n1vTSv
其中 S = ∑ ( p i − p ˉ ) ( p i − p ˉ ) T \boldsymbol{S}=\sum(p_i-\bar{p})(p_i-\bar{p})^T S=∑(pi−pˉ)(pi−pˉ)T
这是一个二次型,所以当 v \boldsymbol{v} v取矩阵 S \boldsymbol{S} S最小特征值对应的特征向量时,目标函数的值最小。
p 0 p_0 p0为拟合点的质心坐标。
v \boldsymbol{v} v应该取矩阵 S = ∑ ( p i − p ˉ ) ( p i − p ˉ ) T \boldsymbol{S}=\sum(p_i-\bar{p})(p_i-\bar{p})^T S=∑(pi−pˉ)(pi−pˉ)T最小特征值对应的特征向量。
从正交回归的直观上的理解是:在二维平面上找到一条直线,使得每个点到直线的垂直距离之和最小。也就是说,正交回归优化的是垂直距离。
上图中红色线段即为每个点的竖直误差,正交回归就是找到这样一条直线,使得红色线段的和最小。
前面两种方法都是解析法,能够准确地求出具体值,但是如果矩阵的规模很大,用计算机求解就有些得不偿失(尤其是矩阵求逆),甚至最后的结果是错误的。
梯度下降法是一个很好的方法,用计算机去迭代近似,能够达到很快的收敛速度,同时也能保证比较高的精确度。
梯度下降法的基本思想可以类比为一个下山的过程,每次循环都已当前位置为基准,找到当前这个位置最陡峭的方向,然后朝着这个方向往下走,最终就会抵达山底。对于算法来说,一个关键的点是如何找到最陡峭的方向。而且每次循环的频率也是一个关键点的参数,如果频率太高,则会收敛太慢,如果频率太低,则可能会偏离方向。
梯度下降法相当于一种迭代算法,先随机给定一个解,然后循环迭代,每次都以目标函数下降最快的
将梯度下降的思想应用到一般最小二乘中。将一般最小二乘的目标函数作为梯度下降的损失函数,将直线的点法式方程中的参数作为梯度下降的优化量。
这里为了方便,对损失函数做一个简单的变换,对损失函数除以 n n n:
J 1 = 1 2 n ∑ ( k x i + c − y i ) 2 \boldsymbol{J}_1=\dfrac{1}{2n}\sum(kx_i+c-y_i)^2 J1=2n1∑(kxi+c−yi)2
则迭代公式为:
θ n e w = θ o l d − α d d θ J 3 ( θ ) \boldsymbol{\theta}_{new}=\boldsymbol{\theta}_{old}-\alpha\dfrac{d}{d \boldsymbol{\theta}}\boldsymbol{J_3}(\boldsymbol{\theta}) θnew=θold−αdθdJ3(θ)
其中 α \alpha α为步长。
线性拟合梯度下降法的迭代步骤如下:
输入:
数据点: ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x n , y n ) (x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n) (x1,y1),(x2,y2),⋯,(xn,yn);
输出:
直线参数:斜率 k k k和截距 c c c;
目标函数的梯度计算为:
d J 1 ( θ ) d θ = A T ( A θ − y ) \dfrac{d \boldsymbol{J}_1(\boldsymbol{\theta})}{d\boldsymbol{\theta}}=\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{\theta}-\boldsymbol{y}) dθdJ1(θ)=AT(Aθ−y)
所以迭代公式可以写成:
θ n e w = θ o l d − α A T ( A θ − y ) \boldsymbol{\theta}_{new}=\boldsymbol{\theta}_{old}-\alpha\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{\theta}-\boldsymbol{y}) θnew=θold−αAT(Aθ−y)
定义收敛值为 θ ∗ \boldsymbol{\theta}^* θ∗,通过解析解法,我们知道:
θ ∗ = ( A T A ) − 1 A T y \boldsymbol{\theta}^*=(\boldsymbol{A}^T\boldsymbol{A})^{-1}\boldsymbol{A}^T\boldsymbol{y} θ∗=(ATA)−1ATy
定义第 k k k步的结果与收敛值的差为:
e k = θ k − θ ∗ \boldsymbol{e}_k=\boldsymbol{\theta}_k-\boldsymbol{\theta}^* ek=θk−θ∗
将 θ k = e k + θ ∗ \boldsymbol{\theta}_k=\boldsymbol{e}_k+\boldsymbol{\theta}^* θk=ek+θ∗和 θ k + 1 = e k + 1 + θ ∗ \boldsymbol{\theta}_{k+1}=\boldsymbol{e}_{k+1}+\boldsymbol{\theta}^* θk+1=ek+1+θ∗带入迭代公式,得:
e k + 1 + θ ∗ = e k + θ ∗ − α A T ( A e k + A θ ∗ − y ) = e k + θ − α A T A e k \begin{aligned} \boldsymbol{e}_{k+1}+\boldsymbol{\theta}^*&=\boldsymbol{e}_k+\boldsymbol{\theta}^*-\alpha\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{e}_k+\boldsymbol{A}\theta^*-\boldsymbol{y}) \\ &=\boldsymbol{e}_k+\boldsymbol{\theta}-\alpha\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{e}_k \end{aligned} ek+1+θ∗=ek+θ∗−αAT(Aek+Aθ∗−y)=ek+θ−αATAek
因此,
e k + 1 = ( I − α A T A ) e k \boldsymbol{e}_{k+1}=(\boldsymbol{I}-\alpha\boldsymbol{A}^T\boldsymbol{A})\boldsymbol{e}_k ek+1=(I−αATA)ek
所以,当 α \alpha α足够小,使得 I − α A T A \boldsymbol{I}-\alpha\boldsymbol{A}^T\boldsymbol{A} I−αATA小于1的时候,结果是收敛的。
因为不同的算法不同的目标函数适用不同的情况,所以根据目标函数的不同,生成两种数据集。
使用 − 2 x + y + 3 = 0 -2x+y+3=0 −2x+y+3=0当做原始直线方程,在直线上随机采取1000个点,然后对这些点的横纵坐标加正态分布的噪声。在这里,我们分两种情况来采集数据集,第一种情况只对纵坐标加噪声,第二种情况对横纵坐标同时加噪声。
采集后的数据点集如下图所示:
(a) 数据集1:只对 y y y加噪声 | (b)数据集2:同时对 x x x和 y y y加噪声 |
上图中,原始直线用蓝色的直线表示,添加噪声后的点用黄色的点表示。明显可以看出,同时对 x x x和 y y y添加噪声后的点要相对稀疏一些。
用截距式直线方程来表示,原直线方程为: y = 2 x − 3 y=2x-3 y=2x−3。所以原直线方程的参数为:
k = 2 c = − 3 \begin{aligned} k&=2\\ c&=-3 \end{aligned} kc=2=−3
首先列出三种算法求出的直线方程的参数,如下表所示:
使用数据集1 | 使用数据集2 | |
---|---|---|
一般最小二乘 | k = 2.0010 , c = − 2.9709 k=2.0010, c=-2.9709 k=2.0010,c=−2.9709 | k = 1.9386 , c = − 2.9061 k=1.9386, c=-2.9061 k=1.9386,c=−2.9061 |
正交回归 | k = 2.0130 , c = − 2.9708 k=2.0130, c=-2.9708 k=2.0130,c=−2.9708 | k = 1.9926 , c = − 2.9038 k=1.9926, c=-2.9038 k=1.9926,c=−2.9038 |
梯度下降法 | k = 2.0010 , c = − 2.9709 k=2.0010, c=-2.9709 k=2.0010,c=−2.9709 | k = 1.9386 , c = − 2.9061 k=1.9386, c=-2.9061 k=1.9386,c=−2.9061 |
使用数据集1 | 使用数据集2 | |
---|---|---|
一般最小二乘 | e k = 0.0010 , e c = 0.0291 e_k=0.0010, e_c=0.0291 ek=0.0010,ec=0.0291 | e k = 0.0614 , e c = 0.0939 e_k=0.0614, e_c=0.0939 ek=0.0614,ec=0.0939 |
正交回归 | e k = 0.0130 , e c = 0.0292 e_k=0.0130, e_c=0.0292 ek=0.0130,ec=0.0292 | e k = 0.0074 , e c = 0.0962 e_k=0.0074, e_c=0.0962 ek=0.0074,ec=0.0962 |
梯度下降法 | e k = 0.0010 , e c = 0.0291 e_k=0.0010, e_c=0.0291 ek=0.0010,ec=0.0291 | e k = 0.0614 , e c = 0.0939 e_k=0.0614, e_c=0.0939 ek=0.0614,ec=0.0939 |
从上面的结果可以得出如下结论:
三种方法的拟合直线图如下所示:
(a)使用数据集1(只对 y y y加噪声) | (b)使用数据集2(同时对 x x x和 y y y加噪声) |
(a) 使用数据集1(只对 y y y加噪声) | (b)使用数据集2(同时对 x x x和 y y y加噪声) |
(a)使用数据集1(只对加噪声) | (b)使用数据集2(同时对和加噪声) |
上图中,原始直线用蓝色直线表示,原始拟合点用黄色的点表示,拟合后的直线用绿色的直线表示。
使用 y = ( x + 5 ) 2 y=(x+5)^2 y=(x+5)2作为原始曲线,随机采点,并对 x x x和 y y y都加噪声。分别使用最小二乘法和正交回归进行拟合仿真,结果如下:
(a)使用一般最小二乘法 | (b)使用正交回归 |
从结果看,两种算法的最后结果差别较大。
3维空间中的平面同样可以用点法式来进行表示。我们用 ( p 0 , v ) (p_0,\boldsymbol{v}) (p0,v)这样的组合来表示直线,其中 p 0 p_0 p0表示平面上的点, v \boldsymbol{v} v表示平面的法向量。
则目标函数可以写成:
J 4 = 1 2 n ∑ ∣ ∣ v v T ( p i − p 0 ) ∣ ∣ 2 \boldsymbol{J}_4=\dfrac{1}{2n}\sum ||\boldsymbol{v}\boldsymbol{v}^T(p_i-p_0)||^2 J4=2n1∑∣∣vvT(pi−p0)∣∣2
这个跟2维直线拟合是一样的,只是向量和矩阵都多了一维。
直接写出结果:
p 0 p_0 p0为拟合点的质心点坐标; v \boldsymbol{v} v应该取矩阵 S = ∑ ( p i − p ˉ ) ( p i − p ˉ ) T \boldsymbol{S}=\sum(p_i-\bar{p})(p_i-\bar{p})^T S=∑(pi−pˉ)(pi−pˉ)T最小特征值对应的特征向量。
3维空间中的直线可以用点向式来表示。用 ( p 0 , v ) (p_0,\boldsymbol{v}) (p0,v)这样的组合来表示3维空间中的任意一条直线,其中 p 0 p_0 p0表示直线上的一点, v \boldsymbol{v} v为直线的方向向量,因为只表示方向,其大小没有关系,所以直接定义其为单位向量。则,点到直线的投影距离为:
d i = ∣ ∣ ( I − v v T ) ( p i − p 0 ) ∣ ∣ d_i=||(\boldsymbol{I}-\boldsymbol{v}\boldsymbol{v}^T)(p_i-p_0)|| di=∣∣(I−vvT)(pi−p0)∣∣
目标函数可以写成:
J 5 = 1 2 n ∑ ∣ ∣ ( I − v v T ) ( p i − p 0 ) ∣ ∣ 2 \boldsymbol{J}_5=\dfrac{1}{2n}\sum||(\boldsymbol{I}-\boldsymbol{v}\boldsymbol{v}^T)(p_i-p_0)||^2 J5=2n1∑∣∣(I−vvT)(pi−p0)∣∣2
也可以化简为多种形式:
J 5 = 1 2 n ∑ [ ( p i − p 0 ) T ( I − v v T ) ( p i − p 0 ) ] J 5 = 1 2 n ∑ [ ( p i − p 0 ) T ( p i − p 0 ) − v T ( p i − p 0 ) ( p i − p 0 ) T v ] \begin{aligned} \boldsymbol{J}_5&=\dfrac{1}{2n}\sum [(p_i-p_0)^T(\boldsymbol{I}-\boldsymbol{v}\boldsymbol{v}^T) (p_i-p_0)]\\ \boldsymbol{J}_5&=\dfrac{1}{2n}\sum [(p_i-p_0)^T(p_i-p_0)-\boldsymbol{v}^T(p_i-p_0)(p_i-p_0)^T\boldsymbol{v}] \end{aligned} J5J5=2n1∑[(pi−p0)T(I−vvT)(pi−p0)]=2n1∑[(pi−p0)T(pi−p0)−vT(pi−p0)(pi−p0)Tv]
推导过程:
目标函数对 p 0 p_0 p0求导得:
∂ J 5 ∂ p 0 = − 1 n ∑ ( I − v v T ) ( p i − p 0 ) \dfrac{\partial \boldsymbol{J}_5}{\partial p_0}=-\dfrac{1}{n}\sum(\boldsymbol{I}-\boldsymbol{v}\boldsymbol{v}^T)(p_i-p_0) ∂p0∂J5=−n1∑(I−vvT)(pi−p0)
令 ∂ J 5 ∂ p 0 = 0 \dfrac{\partial \boldsymbol{J}_5}{\partial p_0}=\boldsymbol{0} ∂p0∂J5=0得:
p 0 = p ˉ p_0=\bar{p} p0=pˉ
其中 p ˉ \bar{p} pˉ为拟合点的质心。
此时,目标函数重写为:
J 5 = 1 2 n ∑ ( p i − p ˉ ) T ( p i − p ˉ ) − 1 2 n ∑ v T ( p i − p ˉ ) ( p i − p ˉ ) T v \boldsymbol{J}_5=\dfrac{1}{2n}\sum(p_i-\bar{p})^T(p_i-\bar{p})-\dfrac{1}{2n}\sum\boldsymbol{v}^T(p_i-\bar{p})(p_i-\bar{p})^T\boldsymbol{v} J5=2n1∑(pi−pˉ)T(pi−pˉ)−2n1∑vT(pi−pˉ)(pi−pˉ)Tv
所以为了求 J 5 \boldsymbol{J}_5 J5的最小值,应该求 J Q = 1 2 n ∑ v T ( p i − p ˉ ) ( p i − p ˉ ) T v \boldsymbol{J}_Q=\dfrac{1}{2n}\sum\boldsymbol{v}^T(p_i-\bar{p})(p_i-\bar{p})^T\boldsymbol{v} JQ=2n1∑vT(pi−pˉ)(pi−pˉ)Tv的最大值。
所以 v \boldsymbol{v} v应该取矩阵 S = ∑ ( p i − p ˉ ) ( p i − p ˉ ) T \boldsymbol{S}=\sum(p_i-\bar{p})(p_i-\bar{p})^T S=∑(pi−pˉ)(pi−pˉ)T最大特征值对应的特征向量。