- 智界R7智驾功能和性能评价
TheWanderers
智能驾驶智界
一、智驾行车能力标题硬件配置与系统架构感知硬件:Max/Ultra版搭载1个192线激光雷达、3个毫米波雷达(含1个4D成像雷达)、12个超声波雷达、11个高清摄像头(含前向800万像素双目+鱼眼镜头)。Pro版未配备激光雷达,但保留3个毫米波雷达和10个摄像头。核心算法:HUAWEIADS3.0系统,基于端到端架构,整合感知、决策与控制模块,支持全场景目标识别(如非标准障碍物、夜间行人)。算力支
- 3D TOF 安全防护传感器
Laurel Vision
3DTOF3d安全计算机视觉
背景3DTOF安全防护传感器是一种先进的传感器技术,主要用于工业自动化、物流仓储、机器人应用等领域。基于3DToF原理,即飞行时间法的传感器,通过测量光脉冲从发射到接收的时间来计算物体与传感器之间的距离,从而获取三维空间信息,实现立体成像。立体安全传感器功能特性:空间安全防护:相比传统二维区域防护,三维立体具有更高安全性和灵活性。高精度:相比激光雷达精度更高,重复精度可达毫米级。简便软件设置
- 手持激光雷达单木分割——以河南工程学院杰出校友杨靖宇将军雕塑背后树林为例
河工点云智绘WangG
河工点云智绘教育培训
教学相长,最近带学生激光雷达实习,采集了河南工程学院校园机载、车载和手持激光雷达数据,针对手持激光雷达,也来玩玩单木分割。一、手持激光雷达单木分割概念单木分割(IndividualTreeSegmentation)是从激光雷达(LiDAR)点云数据中识别并分离出单棵树木的过程,是林业资源调查、森林碳汇估算、生物多样性研究的关键技术。二、关键技术步骤详解1.点云预处理去噪:移除飞点、鸟群等非地表物体
- 自动驾驶激光3D点云处理系统性阐述及Open3D库函数应用
一碗白开水一
DPL自动驾驶3d人工智能
一、自动驾驶激光3D点云处理的核心挑战与流程自动驾驶系统依赖激光雷达(LiDAR)生成的高精度3D点云数据实现环境感知,其处理流程需解决以下核心问题:数据规模与实时性:现代LiDAR每秒生成数百万点,需在毫秒级完成处理以支持决策。动态环境适应性:需区分静态障碍物(如道路、建筑)与动态目标(如车辆、行人)。多传感器融合:与摄像头、雷达数据时空对齐,构建统一环境模型。典型处理流程分为四个阶段:原始点云
- 科技照亮童心|激光院与跳伞塔社区开展公益活动
亚财动态
科技
7月11日,激光院联合跳伞塔社区开展“科娃讲堂”青少年科普公益活动,进一步推进激光院属地化发展,履行央企担当,助力科技人才培养。30余名青少年走进“科娃讲堂”,与激光院优秀青年人才一起共话激光科技。此次活动通过“知识讲解+观察实践”的方式,让青少年近距离感受激光技术的原理和应用。活动现场,激光院青年工程师为青少年们带来精彩纷呈的知识讲解,从激光院的历史沿革到前沿激光技术的发展,从激光雷达的主要应用
- 【世纪龙科技】智能网联汽车环境感知系统教学难题的创新实践
江苏世纪龙科技
智能网联汽车汽车仿真教学软件汽车
在职业院校智能网联汽车专业教学中,环境感知系统的教学长期面临三大核心挑战:设备成本高昂导致实训资源不足、抽象原理难以直观呈现、传统教学模式难以满足产业需求。如何让学生在有限的教学条件下,深入理解激光雷达、毫米波雷达等核心部件的工作原理,并掌握实际应用能力?江苏世纪龙科技研发的《智能网联汽车环境感知系统VR教学软件》,为这一教学痛点提供了创新解决方案。聚焦教学痛点,重构学习体验传统实训室中,传感器设
- 最全 自动驾驶数据集 (11/4号已更新)
数据猎手小k
自动驾驶人工智能机器学习
自动驾驶是一个快速发展的行业,它融合了人工智能、机器学习、传感器技术、高精度地图和先进的计算平台等多种技术。技术方面,自动驾驶汽车依赖于先进的传感器、如激光雷达、摄像头、毫米波雷达等,以及强大的计算平台来处理大量数据,自动驾驶数据集是训练和验证自动驾驶系统的关键资源,它提供了丰富的场景和条件,使算法能够学习和适应复杂的真实世界驾驶环境。一、研究背景自动驾驶技术的发展需要大量的数据来训练和优化算法,
- BEV感知算法:自动驾驶的“上帝视角“革命
fmvrj34202
算法
在自动驾驶技术快速发展的今天,BEV(Bird'sEyeView,鸟瞰图)感知算法正成为行业关注的焦点。这项突破性技术通过将多传感器数据统一映射到鸟瞰视角,为自动驾驶系统构建了前所未有的全局环境认知能力,堪称自动驾驶领域的"上帝视角"革命。BEV的核心技术原理BEV感知算法的核心在于将来自摄像头、激光雷达等不同传感器的异构数据,通过深度学习网络统一转换到俯视坐标系。这一过程主要依靠三大关键技术:多
- 自动驾驶感知系统
三十度角阳光的问候
自动驾驶人工智能机器学习
目录感知传感系统介绍定位技术介绍自动驾驶感知传感系统激光雷达原理激光雷达类型激光雷达测距原理知名供应商介绍毫米波雷达超声波雷达工作原理超声波雷达类型常见自动驾驶传感器品牌及产品感知传感系统介绍利用摄像头捕捉图像信息,如道路标志、交通信号、车辆、行人等,为自动驾驶系统提供决策依据。通过发射激光束并测量反射时间,计算周围物体的距离和位置,提供高精度信息和三维地图。利用毫米波电磁波检测短距离障碍物,测量
- FDMA读写AXI BRAM交互:FPGA高速数据传输的核心技术
芯作者
D1:ZYNQ设计fpga开发
在图像处理系统中,当1080P视频流以每秒60帧的速度传输时,传统DMA每帧会浪费27%的带宽在地址管理上——而FDMA技术能将这些损失降至3%以内现代FPGA系统中,高效数据搬运往往是性能瓶颈的关键所在。当你在手机上流畅播放4K视频、在自动驾驶系统中实时处理激光雷达点云时,背后都依赖于FDMA(FlexibleDirectMemoryAccess)与AXIBRAM的高效交互技术。本文将深入探讨这
- CARIS HIPS and SIPS 12
安若ly
软件需求
CARISHIPSandSIPS12加密狗产品套件为水文数据处理提供了基本功能和专业级工具。HIPS和SIPS支持40多种行业标准数据格式,可轻松集成到任何工作流程中。它使您能够同时处理多波束、反向散射、侧扫声纳、单波束和激光雷达数据。它结合了最新的3D可视化技术,用于水文学,海洋学和海洋科学。作为Ping到图表工作流程的一部分,HIPS和SIPS可以轻松扩展,以满足您更广泛的地理空间需求。
- 主流 3D 感知技术对比-iTOF、dTOF、结构光、激光雷达
moonsims
数码相机
主流3D感知技术对比-iTOF、dTOF、结构光、激光雷达四类主流3D感知技术对比表对比维度iToF相机dToF相机固态LiDAR+可见光融合结构光相机测距原理连续调制光→相位差计算激光脉冲→飞行时间测距激光扫描点云+图像纹理融合投射编码光图案+视差三角测量代表设备IntelD435i,AzureKinectSTVL53L5CX,SonyIMX611L3CAM,RoboSenseM1+RGBRea
- Deepoc 大模型在无人机行业应用效果的方法
Deepoch
无人机人工智能科技语言模型ai
在无人机行业中,Deepoc大模型的潜力,提升其应用效果,可从以下多个关键方面着手:优化数据收集与处理多源数据采集扩充收集涵盖激光雷达点云、高精度地图、气象数据、无人机飞行传感器数据、拍摄的图像与视频等多源数据。例如,在城市环境应用里,除了获取建筑物的视觉图像数据,还收集周边交通流量、信号状态等数据,为Deepoc大模型提供丰富且全面的信息,助力其更精准地理解复杂环境。构建高质量数据集建立严格的数
- 什么是端到端自动驾驶
未来创世纪
自动驾驶自动驾驶人工智能机器学习
一、与传统架构的核心差异工作流程传统模块化架构是分模块串联,比如感知模块先识别出前方有交通信号灯变红,然后将此信息传递给决策模块,决策模块决定要停车,接着规划模块规划出减速的路径和方式,最后控制模块执行停车操作。而端到端架构是直接将传感器的原始数据(如摄像头拍摄的视频、激光雷达的点云数据等)输入给一个单一深度学习模型,模型直接输出控制指令,如控制车辆的转向角度、油门开度或刹车力度。以自动驾驶汽车在
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(续)
格图素书
算法人工智能
目录3.4点云数据精简3.4.1数据精简的要求3.4.2经典精简算法分析3.5点云三维重建算法3.5.1曲面重建方式的分类3.5.2点云数据的三角剖分3.5.3Delaunay三角剖分算法3.5.4贪婪投影三角化算法3.5.5泊松曲面重建算法4特征保留优化的点云精简4.1引言4.2点云精简的思想4.3基于图信号的特征保留优化的点云精简算法4.3.2定义密度均匀性损失4.4点云精简实验结果及分析5隧
- Emgu-WPF 激光雷达研究-绘制雷达图
DuelCode
WPFc#Emgu激光雷达雷达图
硬件:HokuyoURG04LX环境:VS2017-win10-64Emgu_3.2.0.2682语言:C#WPF数据解析参考:https://sourceforge.net/p/urgnetwork/wiki/Home/https://github.com/bqhdev/urg04lx_data_decoderhttp://sourceforge.net/projects/urgnetwork/
- ROS的可视化工具rviz介绍
Xian-HHappy
机器人-Robot信息可视化
RViz简介RViz(RobotVisualization)是ROS(RobotOperatingSystem)中的一个可视化工具。它主要用于在三维空间中可视化机器人传感器数据、机器人的状态、规划路径等信息。RViz就像是一个“机器人世界”的三维展示窗口,能够让用户直观地看到机器人在虚拟环境中的各种情况。RViz的功能特点多传感器数据可视化RViz可以接收多种传感器数据。例如,它可以显示激光雷达(
- ROS 避障技术介绍
Xian-HHappy
机器人-Robotros避障
ROS避障技术介绍一、ROS避障系统概述ROS(机器人操作系统)作为移动机器人开发的主流框架,其避障技术依托模块化设计,通过传感器数据融合、环境建模与运动规划实现动态障碍物规避。在物流机器人、服务机器人、自动驾驶等场景中,ROS避障系统需满足实时性、安全性与灵活性要求,核心流程包括环境感知-障碍建模-路径规划-运动控制四个环节。二、避障核心组件与原理1.传感器层:环境信息获取激光雷达(如Velod
- KITTI数据集可视化实用教程及源码解析
国营窝窝乡蛮大人
本文还有配套的精品资源,点击获取简介:本文详细介绍如何使用源码实现KITTI数据集的可视化,强调数据集可视化在计算机视觉领域的关键作用。重点介绍如何加载、处理和融合KITTI数据集中的图像和激光雷达数据,并通过可视化手段分析结果,包括图像点云投影、坐标转换、颜色映射等技术。读者将通过学习源码深入理解数据结构、文件格式,并定制化工具以满足特定项目需求。1.计算机视觉数据集可视化的重要性在计算机视觉领
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”
Echo_Wish
Python!实战!python自动驾驶汽车
Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”在自动驾驶技术的演进过程中,多传感器融合(Multi-SensorFusion)是不可或缺的一环。单一传感器往往存在局限性,例如摄像头怕光线变化,激光雷达价格昂贵,毫米波雷达分辨率有限,但如果将它们结合起来,就能形成一个更全面、更可靠的环境感知系统。今天,我们就来聊聊如何用Python实现自动驾驶中的多传感器融合,并结合最新技术趋势
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- 目标跟踪存在问题以及解决方案
选与握
#目标跟踪目标跟踪人工智能计算机视觉
3D跟踪一、数据特性引发的跟踪挑战1.点云稀疏性与远距离特征缺失问题表现:激光雷达点云密度随距离平方衰减(如100米外车辆点云数不足近距离的1/10),导致远距离目标几何特征(如车轮、车顶轮廓)不完整,跟踪时易因特征匹配失败导致ID丢失。典型案例:在高速公路场景中,200米外的卡车因点云稀疏(仅约50个点),跟踪算法难以区分其与大型货车的形状差异,导致轨迹跳跃或ID切换。技术方案:稀疏点云增强与特
- 革命性的检测:京瓷推出全球首款具有完美光学对准的摄像头-激光雷达融合传感器
moonsims
人工智能
革命性的检测:京瓷推出全球首款具有完美光学对准的摄像头-激光雷达融合传感器激光雷达(LIDAR)能够即时获取远距离、高精度的3D信息,从而能够在复杂环境和高速运动中以无与伦比的精度检测障碍物。它具有卓越的空间识别能力,能够根据激光束在广阔区域内反射回来的光的时间和角度,识别物体的距离及其大小。通常,激光雷达与摄像头配合使用,可以更准确地识别物体,但不同单元数据中的视差常常导致传感器之间校准延迟。京
- 20亿!禾赛获百度萝卜快跑独家定点,ADAS激光雷达“破圈”L4应用
高工智能汽车
百度
继在前装量产领域“破圈”之后,禾赛率先将ADAS半固态激光雷达大规模应用部署在Robotaxi上面。近日,在武汉大街小巷穿梭着的数百辆百度萝卜快跑无人驾驶出租车,让自动驾驶再度火出圈。据了解,此次在武汉投入运营的无人驾驶车辆采用了百度Apollo第五代自动驾驶系统解决方案,搭载了禾赛Pandar系列高性能激光雷达作为感知主雷达。而今年,更安全、体验更舒适的第六代百度Apollo无人车也将陆续投放市
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建
格图素书
网络
目录前言国内外研究现状隧道监测研究现状表面重建研究现状2二维激光雷达三维扫描系统设计与实现2.1引言2.2系统设计2.2.1需求分析2.2.2方案设计2.3传感器方案选型2.3.1激光雷达测量技术介绍2.3.2激光雷达系统结构2.3.3激光雷达选型2.3.4IMU硬件选择2.42DLidar-IMU坐标系定义与变换2.4.1坐标系定义2.4.2激光雷达与IMU坐标变换2.5系统平台2.6系统扫描实
- 道路点云分割+边界提取+中心线方法总结
asdbhkasgb
相关论文深度学习计算机视觉人工智能算法3d
1.FastLIDAR-basedRoadDetectionUsingFullyConvolutionalNeuralNetworks2017流程点云数据转换为俯视图图像从激光雷达获取的点云数据是无结构的,因此需要先将其转换为适合全卷积神经网络(FCN)处理的格式。具体来说,作者在激光雷达的XY平面上创建一个网格,并将点云中的每个点分配到相应的网格单元。对每个网格单元计算一些基础统计数据,例如:平
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- [创业之路-356]:光、机、电、软、算:跨学科技术体系深度解析
文火冰糖的硅基工坊
创业之路数学建模架构硬件系统架构
1.核心概念与协同关系光、机、电、软、算是现代工程与科技领域的五大核心技术支柱,分别对应光学、机械、电子、软件与算法。它们通过系统级集成实现功能耦合,共同支撑从微观传感器到宏观工业装备的复杂系统。以下为各领域核心定位及协同逻辑:领域核心能力典型应用场景协同关系光光信号产生/调制/检测激光雷达、光纤通信、生物成像为机械系统提供高精度定位(如光栅尺),为电子系统提供高速数据通道(如光通信)机结构设计与
- summary4 ROS服务基于直接通信形式
the only KIrsTEN
python计算机视觉opencvpython人工智能
本课程结束时,您将能够:认识到ROS服务与标准的基于主题的发布者-订阅者方法有何不同,并确定此类消息传递系统的适当用例。实现Python节点对以执行服务并观察它们的工作方式。将相同的原则应用于许多不同的服务消息类型。开发自己的Python服务节点来执行特定的机器人任务。利用服务,结合激光雷达数据,实现一些基本的避障。通过开发一个包含本课程和本课程前几部分内容的Python节点,展示您对ROS的理解
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p