Python计算皮尔逊相关系数

Python三种方法计算皮尔逊相关系数(Pearson correlation coefficient)

0 皮尔逊系数
1 python计算方法
1.1 根据公式手写
1.2 numpy的函数
1.3 scipy.stats中的函数
0 皮尔逊系数
 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pearson product-moment correlation coefficient,简称 PPMCC或PCCs)。用于衡量两个变量X和Y之间的线性相关相关关系,值域在-1与1之间。
Python计算皮尔逊相关系数_第1张图片

1 python计算方法
笔者发现了三种方式,用户可根据自身需求进行使用或者比对:

1.1 根据公式手写
def cal_pccs(x, y, n):
“”"
warning: data format must be narray
:param x: Variable 1
:param y: The variable 2
:param n: The number of elements in x
:return: pccs
“”"
sum_xy = np.sum(np.sum(xy))
sum_x = np.sum(np.sum(x))
sum_y = np.sum(np.sum(y))
sum_x2 = np.sum(np.sum(x
x))
sum_y2 = np.sum(np.sum(yy))
pcc = (n
sum_xy-sum_xsum_y)/np.sqrt((nsum_x2-sum_xsum_x)(nsum_y2-sum_ysum_y))
return pcc

1.2 numpy的函数
pccs = np.corrcoef(x, y)

1.3 scipy.stats中的函数
from scipy.stats import pearsonr
pccs = pearsonr(x, y)

你可能感兴趣的:(python,机器学习)