Android Camera 一 源码路径
Android Camera 二 JNI JAVA和C/CPP图像数据传输流程分析
Android Camera 三 CameraService 和 Client 链接到 HAL
Android Camera 四 Camera HAL 分析
Linux v4l2 一 应用层
Linux v4l2 二 驱动和 usb 摄像头
v4l2 : video for Linux version 2
本文转载: 和菜鸟一起学linux之V4L2摄像头应用流程
V4L2官方例程
从 0 开始学 v4l2 。在网上查阅很多资料,写 demo 采集摄像头的图像数据。感谢大牛们分享的技术博客。
这里做个小结,分享知识。
下面给出写 v4l2 应用程序常用的控制命令和结构体
// linux-3.10.y/include/uapi/linux/videodev2.h
// 常用的结构体
struct v4l2_requestbuffers //申请帧缓冲,对应命令VIDIOC_REQBUFS
struct v4l2_capability //视频设备的功能,对应命令VIDIOC_QUERYCAP
struct v4l2_input //视频输入信息,对应命令VIDIOC_ENUMINPUT
struct v4l2_standard //视频的制式,比如PAL,NTSC,对应命令VIDIOC_ENUMSTD
struct v4l2_format //帧的格式,对应命令VIDIOC_G_FMT、VIDIOC_S_FMT等
struct v4l2_buffer //驱动中的一帧图像缓存,对应命令VIDIOC_QUERYBUF
struct v4l2_crop //视频信号矩形边框
// 常用的控制命令 IOCTL CODES FOR VIDEO DEVICES
VIDIOC_ENUM_FMT /* 获取当前驱动支持的视频格式 */
VIDIOC_G_FMT /* 获取设置支持的视频格式 */
VIDIOC_S_FMT /* 设置捕获视频的格式 */
VIDIOC_TRY_FMT /* 验证当前驱动的显示格式 */
VIDIOC_CROPCAP /* 查询驱动的修剪能力 */
VIDIOC_S_CROP /* 设置视频信号的边框 */
VIDIOC_G_CROP /* 获取视频信号的边框 */
VIDIOC_QUERYSTD /* 检查当前视频设备支持的标准,例如PAL或NTSC */
VIDIOC_QUERYCAP /* 获取设备支持的操作 */
VIDIOC_REQBUFS /* 向驱动提出申请内存的请求 */
VIDIOC_QUERYBUF /* 向驱动查询申请到的内存 */
VIDIOC_QBUF /* 将空闲的内存加入可捕获视频的队列 */
VIDIOC_DQBUF /* 将已经捕获好视频的内存拉出已捕获视频的队列 */
VIDIOC_STREAMON /* 打开视频流 */
VIDIOC_STREAMOFF /* 关闭视频流 */
VIDIOC_QUERYCTRL /* 查询驱动是否支持该命令 */
VIDIOC_G_CTRL /* 获取当前命令值 */
VIDIOC_S_CTRL /* 设置新的命令值 */
VIDIOC_G_TUNER /* 获取调谐器信息 */
VIDIOC_S_TUNER /* 设置调谐器信息 */
VIDIOC_G_FREQUENCY /* 获取调谐器频率 */
VIDIOC_S_FREQUENCY /* 设置调谐器频率 */
应用程序流程:
/*
* V4L2 video capture example
*
* This program can be used and distributed without restrictions.
*/
#include
#include
#include
#include
#include /* getopt_long() */
#include /* low-level i/o */
#include
#include
#include
#include
#include
#include
#include
#include
#include /* for videodev2.h */
#include
#define CLEAR(x) memset (&(x), 0, sizeof (x))
typedef enum {
IO_METHOD_READ, IO_METHOD_MMAP, IO_METHOD_USERPTR,
} io_method;
struct buffer {
void * start;
size_t length;
};
static char * dev_name = NULL;
static io_method io = IO_METHOD_MMAP;
static int fd = -1;
struct buffer * buffers = NULL;
static unsigned int n_buffers = 0;
FILE *fp;
char *filename = "test.yuv\0";
static void errno_exit(const char * s) {
fprintf(stderr, "%s error %d, %s/n", s, errno, strerror(errno));
exit(EXIT_FAILURE);
}
static int xioctl(int fd, int request, void * arg) {
int r;
do {
r = ioctl(fd, request, arg);
} while (-1 == r && EINTR == errno);
return r;
}
static void process_image(const void * p, int size) {
fwrite(p, size, 1, fp);
}
static int read_frame(void) {
struct v4l2_buffer buf;
unsigned int i;
switch (io) {
case IO_METHOD_READ:
if (-1 == read(fd, buffers[0].start, buffers[0].length)) {
switch (errno) {
case EAGAIN:
return 0;
case EIO:
/* Could ignore EIO, see spec. */
/* fall through */
default:
errno_exit("read");
}
}
process_image(buffers[0].start, buffers[0].length);
break;
case IO_METHOD_MMAP:
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:
return 0;
case EIO:
/* Could ignore EIO, see spec. */
/* fall through */
default:
errno_exit("VIDIOC_DQBUF");
}
}
assert(buf.index < n_buffers);
process_image(buffers[buf.index].start, buf.length);
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
break;
case IO_METHOD_USERPTR:
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:
return 0;
case EIO:
/* Could ignore EIO, see spec. */
/* fall through */
default:
errno_exit("VIDIOC_DQBUF");
}
}
for (i = 0; i < n_buffers; ++i)
if (buf.m.userptr == (unsigned long) buffers[i].start
&& buf.length == buffers[i].length)
break;
assert(i < n_buffers);
process_image((void *) buf.m.userptr, buf.length);
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
break;
}
return 1;
}
static void mainloop(void) {
unsigned int count;
count = 100;
while (count-- > 0) {
for (;;) {
fd_set fds;
struct timeval tv;
int r;
FD_ZERO(&fds);
FD_SET(fd, &fds);
/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;
r = select(fd + 1, &fds, NULL, NULL, &tv);
if (-1 == r) {
if (EINTR == errno)
continue;
errno_exit("select");
}
if (0 == r) {
fprintf(stderr, "select timeout/n");
exit(EXIT_FAILURE);
}
if (read_frame())
break;
/* EAGAIN - continue select loop. */
}
}
}
static void stop_capturing(void) {
enum v4l2_buf_type type;
switch (io) {
case IO_METHOD_READ:
/* Nothing to do. */
break;
case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMOFF, &type))
errno_exit("VIDIOC_STREAMOFF");
break;
}
}
static void start_capturing(void) {
unsigned int i;
enum v4l2_buf_type type;
switch (io) {
case IO_METHOD_READ:
/* Nothing to do. */
break;
case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i) {
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))
errno_exit("VIDIOC_STREAMON");
break;
case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i) {
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
buf.index = i;
buf.m.userptr = (unsigned long) buffers[i].start;
buf.length = buffers[i].length;
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))
errno_exit("VIDIOC_STREAMON");
break;
}
}
static void uninit_device(void) {
unsigned int i;
switch (io) {
case IO_METHOD_READ:
free(buffers[0].start);
break;
case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i)
if (-1 == munmap(buffers[i].start, buffers[i].length))
errno_exit("munmap");
break;
case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i)
free(buffers[i].start);
break;
}
free(buffers);
}
static void init_read(unsigned int buffer_size) {
buffers = calloc(1, sizeof(*buffers));
if (!buffers) {
fprintf(stderr, "Out of memory/n");
exit(EXIT_FAILURE);
}
buffers[0].length = buffer_size;
buffers[0].start = malloc(buffer_size);
if (!buffers[0].start) {
fprintf(stderr, "Out of memory/n");
exit(EXIT_FAILURE);
}
}
static void init_mmap(void) {
struct v4l2_requestbuffers req;
CLEAR(req);
req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;
if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {
fprintf(stderr, "%s does not support "
"memory mapping/n", dev_name);
exit(EXIT_FAILURE);
} else {
errno_exit("VIDIOC_REQBUFS");
}
}
if (req.count < 2) {
fprintf(stderr, "Insufficient buffer memory on %s/n", dev_name);
exit(EXIT_FAILURE);
}
buffers = calloc(req.count, sizeof(*buffers));
if (!buffers) {
fprintf(stderr, "Out of memory/n");
exit(EXIT_FAILURE);
}
for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;
if (-1 == xioctl(fd, VIDIOC_QUERYBUF, &buf))
errno_exit("VIDIOC_QUERYBUF");
buffers[n_buffers].length = buf.length;
buffers[n_buffers].start = mmap(NULL /* start anywhere */, buf.length,
PROT_READ | PROT_WRITE /* required */,
MAP_SHARED /* recommended */, fd, buf.m.offset);
if (MAP_FAILED == buffers[n_buffers].start)
errno_exit("mmap");
}
}
static void init_userp(unsigned int buffer_size) {
struct v4l2_requestbuffers req;
unsigned int page_size;
page_size = getpagesize();
buffer_size = (buffer_size + page_size - 1) & ~(page_size - 1);
CLEAR(req);
req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_USERPTR;
if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {
fprintf(stderr, "%s does not support "
"user pointer i/o/n", dev_name);
exit(EXIT_FAILURE);
} else {
errno_exit("VIDIOC_REQBUFS");
}
}
buffers = calloc(4, sizeof(*buffers));
if (!buffers) {
fprintf(stderr, "Out of memory/n");
exit(EXIT_FAILURE);
}
for (n_buffers = 0; n_buffers < 4; ++n_buffers) {
buffers[n_buffers].length = buffer_size;
buffers[n_buffers].start = memalign(/* boundary */page_size,
buffer_size);
if (!buffers[n_buffers].start) {
fprintf(stderr, "Out of memory/n");
exit(EXIT_FAILURE);
}
}
}
static void init_device(void) {
struct v4l2_capability cap;
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format fmt;
unsigned int min;
if (-1 == xioctl(fd, VIDIOC_QUERYCAP, &cap)) {
if (EINVAL == errno) {
fprintf(stderr, "%s is no V4L2 device/n", dev_name);
exit(EXIT_FAILURE);
} else {
errno_exit("VIDIOC_QUERYCAP");
}
}
if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
fprintf(stderr, "%s is no video capture device/n", dev_name);
exit(EXIT_FAILURE);
}
switch (io) {
case IO_METHOD_READ:
if (!(cap.capabilities & V4L2_CAP_READWRITE)) {
fprintf(stderr, "%s does not support read i/o/n", dev_name);
exit(EXIT_FAILURE);
}
break;
case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:
if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
fprintf(stderr, "%s does not support streaming i/o/n", dev_name);
exit(EXIT_FAILURE);
}
break;
}
/* Select video input, video standard and tune here. */
CLEAR(cropcap);
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (0 == xioctl(fd, VIDIOC_CROPCAP, &cropcap)) {
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */
if (-1 == xioctl(fd, VIDIOC_S_CROP, &crop)) {
switch (errno) {
case EINVAL:
/* Cropping not supported. */
break;
default:
/* Errors ignored. */
break;
}
}
} else {
/* Errors ignored. */
}
CLEAR(fmt);
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))
errno_exit("VIDIOC_S_FMT");
/* Note VIDIOC_S_FMT may change width and height. */
/* Buggy driver paranoia. */
min = fmt.fmt.pix.width * 2;
if (fmt.fmt.pix.bytesperline < min)
fmt.fmt.pix.bytesperline = min;
min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
if (fmt.fmt.pix.sizeimage < min)
fmt.fmt.pix.sizeimage = min;
switch (io) {
case IO_METHOD_READ:
init_read(fmt.fmt.pix.sizeimage);
break;
case IO_METHOD_MMAP:
init_mmap();
break;
case IO_METHOD_USERPTR:
init_userp(fmt.fmt.pix.sizeimage);
break;
}
}
static void close_device(void) {
if (-1 == close(fd))
errno_exit("close");
fd = -1;
}
static void open_device(void) {
struct stat st;
if (-1 == stat(dev_name, &st)) {
fprintf(stderr, "Cannot identify '%s': %d, %s/n", dev_name, errno,
strerror(errno));
exit(EXIT_FAILURE);
}
if (!S_ISCHR(st.st_mode)) {
fprintf(stderr, "%s is no device/n", dev_name);
exit(EXIT_FAILURE);
}
fd = open(dev_name, O_RDWR /* required */| O_NONBLOCK, 0);
if (-1 == fd) {
fprintf(stderr, "Cannot open '%s': %d, %s/n", dev_name, errno,
strerror(errno));
exit(EXIT_FAILURE);
}
}
static void usage(FILE * fp, int argc, char ** argv) {
fprintf(fp, "Usage: %s [options]/n/n"
"Options:/n"
"-d | --device name Video device name [/dev/video]/n"
"-h | --help Print this message/n"
"-m | --mmap Use memory mapped buffers/n"
"-r | --read Use read() calls/n"
"-u | --userp Use application allocated buffers/n"
"", argv[0]);
}
static const char short_options[] = "d:hmru";
static const struct option long_options[] = { { "device", required_argument,
NULL, 'd' }, { "help", no_argument, NULL, 'h' }, { "mmap", no_argument,
NULL, 'm' }, { "read", no_argument, NULL, 'r' }, { "userp", no_argument,
NULL, 'u' }, { 0, 0, 0, 0 } };
int main(int argc, char ** argv) {
dev_name = "/dev/video0";
for (;;) {
int index;
int c;
c = getopt_long(argc, argv, short_options, long_options, &index);
if (-1 == c)
break;
switch (c) {
case 0: /* getopt_long() flag */
break;
case 'd':
dev_name = optarg;
break;
case 'h':
usage(stdout, argc, argv);
exit(EXIT_SUCCESS);
case 'm':
io = IO_METHOD_MMAP;
break;
case 'r':
io = IO_METHOD_READ;
break;
case 'u':
io = IO_METHOD_USERPTR;
break;
default:
usage(stderr, argc, argv);
exit(EXIT_FAILURE);
}
}
open_device();
init_device();
start_capturing();
fp = fopen(filename, "wa+");
mainloop();
fclose(fp);
stop_capturing();
uninit_device();
close_device();
exit(EXIT_SUCCESS);
return 0;
}