上一篇:Python3 如何优雅地使用正则表达式(详解三)
到目前为止,我们只是介绍了正则表达式的一部分功能。在这一篇中,我们会学习到一些新的元字符,然后再教大家如何使用组来获得被匹配的部分文本。
还有一些元字符我们没有讲到,接下来小甲鱼一一为大家讲解。
有些元字符它们不匹配任何字符,只是简单地表示成功或失败,因此这些字符也称之为零宽断言。例如 \b 表示当前位置位于一个单词的边界,但 \b 并不能改变位置。因此,零宽断言不应该被重复使用,因为 \b 并不会修改当前位置,所以 \b\b 跟 \b 是没什么两样的。
解释:很多人可能不理解“改变位置”和“零宽断言”的意思?我尝试解释下,比如 abc 匹配完 a 之后,咱的当前位置就会移动,才能继续匹配 b,依次类推…但是 \babc 的话,\b 表示当前位置在单词的边界(单词的第一个字母或者最后一个字母),这时候当前位置不会发生改变,接着将 a 与当前位置的字符进行匹配…
|
或操作符,对两个正则表达式进行或操作。如果 A 和 B 是正则表达式,A | B 会匹配 A 或 B 中出现的任何字符。为了能够更加合理的工作,| 的优先级非常低。例如 Fish|C 应该匹配 Fish 或 C,而不是匹配 Fis,然后一个 ‘h’ 或 ‘C’。
同样,我们使用 | 来匹配 ‘|’ 字符本身;或者包含在一个字符类中,像这样 [|]。
^
匹配字符串的起始位置。如果设置了 MULTILINE 标志,就会变成匹配每一行的起始位置。在 MULTILINE 中,每当遇到换行符就会立刻进行匹配。
举个例子,如果你只希望匹配位于字符串开头的单词 From,那么你的正则表达式可以写为 ^From:
>>> print(re.search('^From', 'From Here to Eternity'))
<_sre.SRE_Match object; span=(0, 4), match='From'>
>>> print(re.search('^From', 'Reciting From Memory'))
None
$
匹配字符串的结束位置,每当遇到换行符也会离开进行匹配。
>>> print(re.search('}$', '{block}'))
<_sre.SRE_Match object; span=(6, 7), match='}'>
>>> print(re.search('}$', '{block} '))
None
>>> print(re.search('}$', '{block}\n'))
<_sre.SRE_Match object; span=(6, 7), match='}'>
同样,我们使用 \$ 来匹配 '$' 字符本身;或者包含在一个字符类中,像这样 [$]。
\A
只匹配字符串的起始位置。如果没有设置 MULTILINE 标志的时候,\A 和 ^ 的功能是一样的;但如果设置了 MULTILINE 标志,则会有一些不同: \A 还是匹配字符串的起始位置,但 ^ 会对字符串中的每一行都进行匹配。
\Z
只匹配字符串的结束位置。
\b
单词边界,这是一个只匹配单词的开始和结尾的零宽断言。“单词”定义为一个字母数字的序列,所以单词的结束指的是空格或者非字母数字的字符。
下边例子中,class 只有在出现一个完整的单词 class 时才匹配;如果出现在别的单词中,并不会匹配。
>>> p = re.compile(r'\bclass\b')
>>> print(p.search('no class at all'))
<_sre.SRE_Match object; span=(3, 8), match='class'>
>>> print(p.search('the declassified algorithm'))
None
>>> print(p.search('one subclass is'))
None
在使用这些特殊的序列的时候,有两点是需要注意的:第一点需要注意的是,Python 的字符串跟正则表达式在有些字符上是有冲突的(回忆之前反斜杠的例子)。比如说在 Python 中,\b 表示的是退格符(ASCII 码值是 8)。所以,你如果不使用原始字符串,Python 会将 \b 转换成退格符处理,这样就肯定跟你的预期不一样了。
下边的例子中,我们故意不写表示原始字符串的 ‘r’,结果确实大相庭径:
>>> p = re.compile('\bclass\b')
>>> print(p.search('no class at all'))
None
>>> print(p.search('\b' + 'class' + '\b'))
<_sre.SRE_Match object; span=(0, 7), match='\x08class\x08'>
第二点需要注意的是,在字符类中不能使用这个断言。跟 Python 一样,在字符类中,\b 只是用来表示退格符。
\B
另一个零宽断言,与 \b 的含义相反,\B 表示非单词边界的位置。
通常在实际的应用过程中,我们除了需要知道一个正则表达式是否匹配之外,还需要更多的信息。对于比较复杂的内容,正则表达式通常使用分组的方式分别对不同内容进行匹配。
下边的例子,我们将 RFC-822 头用“:”号分成名字和值分别匹配:
From: author@example.com
User-Agent: Thunderbird 1.5.0.9 (X11/20061227)
MIME-Version: 1.0
To: editor@example.com
像这种情况,我们就可以写一个正则表达式先来匹配一整个 RFC-822 头,然后利用分组功能,使用一个组来匹配头的名字,另一个组匹配名字对应的值。
解释:RFC-822 是电子邮件的标准格式,当然看到这里你还不知道分组要怎么分,不急,请接着往下看…
在正则表达式中,使用元字符 ( )&bsp;来划分组。( ) 元字符跟数学表达式中的小括号含义差不多;它们将包含在内部的表达式组合在一起,所以你可以对一个组的内容使用重复操作的元字符,例如 *,+,? 或者 {m,n}。
例如,(ab)* 会匹配零个或者多个 ab:
>>> p = re.compile('(ab)*')
>>> print(p.match('ababababab').span())
(0, 10)
使用 ( ) 表示的子组我们还可以对它进行按层次索引,可以将索引值作为参数传递给这些方法:group(),start(),end() 和 span()。序号 0 表示第一个分组(这个是默认分组,一直存在的,所以不传入参数相当于默认值 0):
>>> p = re.compile('(a)b')
>>> m = p.match('ab')
>>> m.group()
'ab'
>>> m.group(0)
'ab'
解释:有几对小括号就是分成了几个子组,例如 (a)(b) 和 (a(b)) 都是由两个子组构成的。
子组的索引值是从左到右进行编号,子组也允许嵌套,因此我们可以通过从左往右来统计左括号 ( 来确定子组的序号。
>>> p = re.compile('(a(b)c)d')
>>> m = p.match('abcd')
>>> m.group(0)
'abcd'
>>> m.group(1)
'abc'
>>> m.group(2)
'b'
group() 方法可以一次传入多个子组的序号:
>>> m.group(2,1,2)
('b', 'abc', 'b')
解释:start() 是获得参数子组的开始位置;end() 是获得对应子组的结束位置;span() 是获得对应子组的范围
我们还可以通过 groups() 方法一次性返回所有的子组匹配的字符串:
>>> m.groups()
('abc', 'b')
还有一个反向引用的概念需要介绍。反向引用指的是你可以在后面的位置使用先前匹配过的内容,用法是反斜杠加上数字。例如 \1 表示引用前边成功匹配的序号为 1 的子组。
>>> p = re.compile(r'(\b\w+)\s+\1')
>>> p.search('Paris in the the spring').group()
'the the'
如果只是搜索字符串,反向引用不会被用到,因为很少有文本格式会这样来重复字符。但是,你很快会发现,在字符串替换的时候,反向引用是非常有用的(深井冰)!
注释:注意,在 Python 的字符串中会使用反斜杠加数字的方式来表示数字的值对应的 ASCII 字符,所以在使用反向索引的正则表达式中,我们依然强调要使用原始字符串。
(未完待续)
下一篇:Python3 如何优雅地使用正则表达式(详解五)