凸包算法(convex hull)

前言

今天学习了几何算法——凸包算法,听着名字很奇怪,不知道它是干什么的,但其实也很简单。下面来介绍一下这种凸包算法和其c++代码:

凸包算法

其实很简单,就是用一个的凸多边形围住所有的点。就好像桌面上有许多图钉,用一根紧绷的橡皮筋将它们全部围起来一样。算法详细步骤:

1. 找到所有点中纵坐标y最小的点,也就是这些点中最下面的点,记为p0。

2. 然后计算其余点与该点的连线与x轴之间夹角的余弦值,将这些点按其对于最低点的正弦值从大到小排序,排序好的点记为p1, p2, p3, ......

凸包算法(convex hull)_第1张图片

3. 将最低点p0和排序好的点中的第一个点p1压入栈中,然后从p2开始计算,计算栈顶两个点与该点三点向量是否是逆时针转动,若是,则将该点压入栈中,否则将栈顶元素推出。(此处对栈的概念不清楚可自行搜索)

4. 最后栈里面元素就是所有的凸包外围的点

判断是否为逆时针旋转

凸包算法(convex hull)_第2张图片

area = (b.x-a.x) * (c.y-a.y) - (b.y-a.y) * (c.x-a.x)

area >0,A-B-C逆时针旋转; 
area <0,A-B-C顺时针旋转; 
area =0,A-B-C在一条直线上。

来看看c++代码:

class mpoint{                       //class point(x, y)
public:
    double x;
    double y;
    mpoint(double xx = 0, double yy = 0){
        x = xx;
        y = yy;
    }

};

int get_miny_point_id(mpoint *points, int size){ //get the point with min_y
    int i, min_id = 0;
    double miny = 10000;
    for(i = 0; i < size; i++){
        if(points[i].y < miny){
            miny = points[i].y;
            min_id = i;
        }
    }
    return min_id;
}

void get_cos(mpoint *points, double *mcos, int id, int size){  //get point's cos
    int i;
    double coss;
    for(i = 0; i < size; i++){
        if(i == id){
            mcos[i] = 2;
        }
        else{
            coss = (points[i].x - points[id].x) / sqrt((points[i].x - points[id].x) * (points[i].x - points[id].x) + (points[i].y - points[id].y) * (points[i].y - points[id].y));
            mcos[i] = coss;
        }
    }
}

void sort_points(mpoint *points, double *mcos, int size){   //sort the points
    int i, j;
    double temp_cos;
    mpoint temp_point;
    for(i = 0; i < size; i++){
        for(j = 0; j < size - i - 1; j++){      //bubble sorting
            if(mcos[j] < mcos[j + 1]){
                temp_cos = mcos[j];
                mcos[j] = mcos[j + 1];
                mcos[j + 1] = temp_cos;
                
                temp_point = points[j];
                points[j] = points[j + 1];
                points[j + 1] = temp_point;
            }
        }
    }
}

int ccw(mpoint a, mpoint b, mpoint c){          //judge if it is couter-colockwise
    double area2 = (b.x-a.x) * (c.y-a.y) - (b.y-a.y) * (c.x-a.x);
    if (area2 < 0){
        return -1;          // clockwise
    }
    else{
        if (area2 > 0) return 1;    // counter-clockwise
        else return 0;              // collinear
    }
    
}

void get_outpoint(mpoint *points, int size){    //get points in stack
    int i, k;
    vector outpoint;
    outpoint.push_back(points[0]);
    outpoint.push_back(points[1]);
    i = 2;
    while(true){
        if(i == size){
            break;
        }
        if(ccw(outpoint[outpoint.size() - 2], outpoint[outpoint.size() - 1], points[i]) > 0){
            outpoint.push_back(points[i]);
            i = i + 1;
        }
        else{
            outpoint.pop_back();
        }
    }
    cout << "The outpoints are: " << endl;
    for(k = 0; k < outpoint.size(); k++){
        cout << outpoint[k].x << " " << outpoint[k].y << endl;
    }
}

这里主要介绍算法,就没有写栈,用一个vector代替了栈,意思相同。

运行一下:

#include 
#include 
#include 

using namespace std;

int main()
{
    int i, size = 4;
    double px, py;
    cout << "Please input the size: ";
    cin >> size;
    mpoint *points;
    int miny_point_id;
    double *mcos;
    points = new mpoint[size];
    mcos = new double[size];
    for(i = 0; i < size; i++){
        cin >> px;
        cin >> py;
        points[i].x = px;
        points[i].y = py;
    }
    miny_point_id = get_miny_point_id(points, size);
    get_cos(points, mcos, miny_point_id, size);
    sort_points(points, mcos, size);
    get_outpoint(points, size);
}

输入:

Please input the size: 8

1 0

0 1

0 -1

-1 0

2 0

0 2

0 -2

-2 0

输出:(凸包顶点坐标)

0  -2

2  0

0  2

-2 0

总结

在图形学中,凸包是一个非常重要的概念。简明的说,在平面中给出N个点,找出一个由其中某些点作为顶点组成的凸多边形,恰好能围住所有的N个点。该凸包算法又叫Graham Scan法。点排序时间复杂度O(nlogn), 检查每个点O(n), 综合时间复杂度O(nlogn).

 

最后强烈推荐Coursera上普林斯顿大学的算法课点击打开链接

 

 

以上内容纯属个人学习总结,不代表任何团体或单位。若有理解不到之处请见谅!

你可能感兴趣的:(凸包算法(convex hull))