题目描述
master对树上的求和非常感兴趣。他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k次方和,而且每次的k可能是不同的。此处节点深度的定义是这个节点到根的路径上的边数。他把这个问题交给了pupil,但pupil并不会这么复杂的操作,你能帮他解决吗?
输入
第一行包含一个正整数n,表示树的节点数。
之后n−1行每行两个空格隔开的正整数i,j,表示树上的一条连接点i和点j的边。
之后一行一个正整数m,表示询问的数量。
之后每行三个空格隔开的正整数i,j,k,表示询问从点i到点j的路径上所有节点深度的k次方和。由于这个结果可能非常大,输出其对998244353取模的结果。
树的节点从1开始标号,其中1号节点为树的根。
输出
对于每组数据输出一行一个正整数表示取模后的结果。
样例输入
5
1 2
1 3
2 4
2 5
2
1 4 5
5 4 45
样例输出
33
503245989
提示
以下用d(i)表示第i个节点的深度。
对于样例中的树,有d(1)=0,d(2)=1,d(3)=1,d(4)=2,d(5)=2。
因此第一个询问答案为(25+15+05) mod 998244353=33,第二个询问答案为(245+145+245) mod 998244353=503245989。
对于30%的数据,1≤n,m≤100;
对于60%的数据,1≤n,m≤1000;
对于100%的数据,1≤n,m≤300000,1≤k≤50。
思路:利用前向星见图bfs过程中,记录深度维护val[i][j],i表th[]示当前结点,j表示k,val[i][j]=val[fa[i]][j]+cal(de[i],j),这样可以维护一个前缀和,后面给出查询的时候,先用倍增法求出lca,然后val[a][k]+val[b][k]-2*val[lca][k]+cal(lca,k)就是这条路径上的深度K次方和。
代码:(照着狂兵模板改的):)
#include
#include
#include
#include
#include
#include