神经网络学习——第一个代码学习

学习的博客来自:人工神经网络——反向传播算法(BP)以及Python实现
一共分为两个py文件
1、BPNN

"""
输入层:3
隐藏层:3
输出层:2
"""
import numpy as np
import math
import matplotlib.pyplot as plt

# 激励函数及相应导数
def sigmoid(x):
    return 1.0 / (1 + np.exp(-x))
def diff_sigmoid(x):
    fval = sigmoid(x)
    return fval * (1 - fval)
def linear(x):
    return x
def diff_linear(x):
    return np.ones_like(x)


class BP:
    def __init__(self, n_hidden=None, f_hidden='sigmoid', f_output='linear',
                 epsilon=0, maxstep=0, eta=0, alpha=0):
        """
        :param n_hidden: 输入层神经元数目
        :param f_hidden: 隐藏层神经元数目
        :param f_output: 输出层神经元数目
        :param epsilon: 阈值
        :param maxstep:
        :param eta: 学习率
        :param alpha: 动量因子
        :return:
        """
        self.n_input = None
        self.n_hidden = n_hidden
        self.n_output = None
        self.f_hidden = f_hidden
        self.f_output = f_output
        self.epsilon = epsilon
        self.maxstep = maxstep
        self.eta = eta
        self.alpha = alpha

        self.wih = None  # 输入层到隐藏层权值矩阵
        self.who = None  # 隐藏层到输出层权值矩阵
        self.bih = None  # 输入层到隐藏层阈值
        self.bho = None  # 隐藏层到输出层阈值
        self.N = None

    def init_param(self, X_data, y_data):
        # 初始化
        if len(X_data.shape) == 1:  # 若输入数据为一维数组,则进行转置为n维数组
            X_data = np.transpose([X_data])
        self.N = X_data.shape[0]
        # normalizer = np.linalg.norm(X_data, axis=0)
        # X_data = X_data / normalizer
        if len(y_data.shape) == 1:
            y_data = np.transpose([y_data])
        self.n_input = X_data.shape[1]
        self.n_output = y_data.shape[1]
        if self.n_hidden is None:
            self.n_hidden = int(math.ceil(math.sqrt(self.n_input + self.n_output)) + 2)
        self.wih = np.random.rand(self.n_input, self.n_hidden)  # i*h
        self.who = np.random.rand(self.n_hidden, self.n_output)  # h*o
        self.bih = np.random.rand(self.n_hidden)  # h
        self.bho = np.random.rand(self.n_output)  # o
        return X_data, y_data

    def inspirit(self, name):
        # 获取相应的激励函数
        if name == 'sigmoid':
            return sigmoid
        elif name == 'linear':
            return linear
        else:
            raise ValueError('the function is not supported now')

    def diff_inspirit(self, name):
        # 获取相应的激励函数的导数
        if name == 'sigmoid':
            return diff_sigmoid
        elif name == 'linear':
            return diff_linear
        else:
            raise ValueError('the function is not supported now')

    def forward(self, X_data):
        # 前向传播
        x_hidden_in = np.dot(X_data, self.wih) + self.bih  # n*h
        x_hidden_out = self.inspirit(self.f_hidden)(x_hidden_in)  # n*h
        x_output_in = np.dot(x_hidden_out, self.who) + self.bho  # n*o
        x_output_out = self.inspirit(self.f_output)(x_output_in)  # n*o
        return x_output_out, x_output_in, x_hidden_out, x_hidden_in

    def fit(self, X_data, y_data):
        # 训练主函数
        X_data, y_data = self.init_param(X_data, y_data)
        step = 0
        E = np.zeros_like(y_data)
        # 初始化动量项
        delta_wih = np.zeros_like(self.wih)
        delta_who = np.zeros_like(self.who)
        delta_bih = np.zeros_like(self.bih)
        delta_bho = np.zeros_like(self.bho)
        while step < self.maxstep:
            step += 1
            # 向前传播
            x_output_out, x_output_in, x_hidden_out, x_hidden_in = self.forward(X_data)
            if np.sum(abs(x_output_out - y_data)) < self.epsilon:
                break
            # 计算误差函数E = 0.5*(y_data - x_output_out)^2
            E = 0.5*(y_data - x_output_out)**2

            # 误差反向传播,依据权值逐层计算当层误差
            err_output = y_data - x_output_out  # n*o, 输出层上,每个神经元上的误差
            delta_ho = -err_output * self.diff_inspirit(self.f_output)(x_output_in)  # n*o
            err_hidden = np.dot(delta_ho, self.who.T)  # n*h, 隐藏层(相当于输入层的输出),每个神经元上的误差
            # 隐藏层到输出层权值及阈值更新
            delta_bho = np.sum(self.eta * delta_ho + self.alpha * delta_bho, axis=0) / self.N
            self.bho -= delta_bho
            delta_who = np.dot(self.eta * x_hidden_out.T, delta_ho) + self.alpha * delta_who
            self.who -= delta_who
            # 输入层到隐藏层权值及阈值的更新
            delta_ih = err_hidden * self.diff_inspirit(self.f_hidden)(x_hidden_in)  # n*h
            delta_bih = np.sum(self.eta * delta_ih + self.alpha * delta_bih, axis=0) / self.N
            self.bih -= delta_bih
            delta_wih = np.dot(self.eta * X_data.T, delta_ih) + self.alpha * delta_wih
            self.wih -= delta_wih
        return

    def predict(self, X):
        # 预测
        res = self.forward(X)
        return res[0]

2、Mytest

"""
Input: 训练数据集X_data和y_data, 神经网络必要参数,误差阈值epsilon,最大迭代次数maxstep
Output: 神经网络权值W
Step1: 初始化权值矩阵W,阈值b
Step2: 迭代训练直到误差小于阈值epsilon或达到最大迭代次数maxstep。训练步骤包括前向传播和误差反向传播。

"""

import matplotlib.pyplot as plt
import numpy as np
import BPNN
N = 100
X_data = np.linspace(-1, 1, N)
X_data = np.transpose([X_data])
y_data = np.exp(-X_data) * np.sin(2 * X_data)
plt.plot(X_data, y_data, color='red', label='trainning data',linewidth=3)

bp100 = BPNN.BP(n_hidden=None, f_hidden='sigmoid',f_output='linear',
             maxstep=100,epsilon=1e-3, eta=0.01, alpha=0.1)
bp100.fit(X_data, y_data)
pred100 = bp100.predict(X_data)

bp500 = BPNN.BP(n_hidden=None, f_hidden='sigmoid',f_output='linear',
             maxstep=500,epsilon=1e-3, eta=0.01, alpha=0.1)
bp500.fit(X_data, y_data)
pred500 = bp500.predict(X_data)

bp1000 = BPNN.BP(n_hidden=None, f_hidden='sigmoid',f_output='linear',
             maxstep=1000,epsilon=1e-3, eta=0.01, alpha=0.1)
bp1000.fit(X_data, y_data)
pred1000 = bp1000.predict(X_data)

bp2000 = BPNN.BP(n_hidden=None, f_hidden='sigmoid',f_output='linear',
             maxstep=2000,epsilon=1e-3, eta=0.01, alpha=0.1)
bp2000.fit(X_data, y_data)
pred2000 = bp2000.predict(X_data)

plt.plot(X_data, pred100, color='gold', label='maxstep=100')
plt.plot(X_data, pred500, color='blue', label='maxstep=500')
plt.plot(X_data, pred1000, color='purple', label='maxstep=1000')
plt.plot(X_data, pred2000, color='green', label='maxstep=2000')
plt.legend()

plt.show()

3、结果
a. maxstep越大,预测值越靠近实际
神经网络学习——第一个代码学习_第1张图片

你可能感兴趣的:(机器学习,深度学习)