大数据学习hadoop3.1.3——Flume开发自定义Interceptor(实战开发)

1)案例需求

使用Flume采集服务器本地日志,需要按照日志类型的不同,将不同种类的日志发往不同的分析系统。

2)需求分析

在实际的开发中,一台服务器产生的日志类型可能有很多种,不同类型的日志可能需要发送到不同的分析系统。此时会用到Flume拓扑结构中的Multiplexing结构,Multiplexing的原理是,根据event中Header的某个key的值,将不同的event发送到不同的Channel中,所以我们需要自定义一个Interceptor,为不同类型的event的Header中的value赋予不同的值。

在该案例中,我们以端口数据模拟日志,以数字(单个)和字母(单个)模拟不同类型的日志,我们需要自定义interceptor区分数字和字母,将其分别发往不同的分析系统(Channel)。

3)实现步骤
(1)创建一个maven项目,并引入以下依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>HdfsTest</artifactId>
        <groupId>com.caron.hdfs</groupId>
        <version>1.0-SNAPSHOT</version>
        <relativePath>../HdfsTest/pom.xml</relativePath>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.caron.flume</groupId>
    <artifactId>flume</artifactId>

    <dependencies>
        <dependency>
            <groupId>org.apache.flume</groupId>
            <artifactId>flume-ng-core</artifactId>
            <version>1.9.0</version>
        </dependency>
    </dependencies>

</project>

(2)定义MyInterceptor类并实现Interceptor接口

package com.caron.flume.interceptor;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.util.List;
import java.util.Map;
/**
 * @author Caron
 * @create 2020-05-05-9:33
 * @Description
 * @Version
 */
public class MyInterceptor implements Interceptor {
    public void initialize() {
    }
    public Event intercept(Event event) {
        //获取传入事件的Header
        Map<String,String> headers = event.getHeaders();
        //获取body
        byte[] body = event.getBody();
        //获取首字符
        String s = new String(body);
        char c = s.charAt(0);
        if((c <= 'z' && c >= 'a')|| (c <= 'Z' && c >= 'A') ){
            headers.put("xxx","aaa");
        }else {
            headers.put("xxx","bbb");
        }
        return event;
    }
    public List<Event> intercept(List<Event> list) {
        for (Event event :
                list) {
            intercept(event);
        }
        return list;
    }
    public void close() {
    }
    /**
     * 框架会调用Builder来创建Interceptor实例
     */
    public static class MyBuilder implements Interceptor.Builder {
        /**
         * 创建实例的方法
         * @return 新的Interceptor
         */
        public Interceptor build() {
            return new MyInterceptor();
        }
        /**
         * 读取配置文件的方法
         * @param context 配置文件
         */
        public void configure(Context context) {
        }
    }
}

编写完毕打包放入flume/lib文件夹中

(3)编辑flume配置文件

为hadoop101上的Flume1配置1个netcat source,1个sink
group(2个avro sink),并配置相应的ChannelSelector和interceptor。
101:

 sudo vim /opt/module/flume/job/group4/flume1.conf
#Name the components on this agent
 a1.sources = r1
 a1.sinks = k1 k2
 a1.channels = c1 c2
 # Describe/configure the source
 a1.sources.r1.type = netcat
 a1.sources.r1.bind = 0.0.0.0
 a1.sources.r1.port = 44444
 
 #拦截器链
 a1.sources.r1.interceptors = i1
 a1.sources.r1.interceptors.i1.type =com.caron.flume.interceptor.MyInterceptor$MyBuilder
 
 #多路复用模式
 a1.sources.r1.selector.type = multiplexing
 a1.sources.r1.selector.header = xxx
 a1.sources.r1.selector.mapping.aaa = c1
 a1.sources.r1.selector.mapping.bbb = c2
 
 # Describe the sink
 a1.sinks.k1.type = avro
 a1.sinks.k1.hostname = hadoop102
 a1.sinks.k1.port = 4141
 
 a1.sinks.k2.type=avro
 a1.sinks.k2.hostname = hadoop103
 a1.sinks.k2.port = 4242
 
 # Use a channel which buffers events in memory
 a1.channels.c1.type = memory
 a1.channels.c1.capacity = 1000
 a1.channels.c1.transactionCapacity = 100
 
 # Use a channel which buffers events in memory
 a1.channels.c2.type = memory
 a1.channels.c2.capacity = 1000
 a1.channels.c2.transactionCapacity = 100
 
 # Bind the source and sink to the channel
 a1.sources.r1.channels = c1 c2
 a1.sinks.k1.channel = c1
 a1.sinks.k2.channel = c2

102:

sudo vim /opt/module/flume/job/group4/flume2.conf
 a2.sources = r1
 a2.sinks = k1
 a2.channels = c1
 
 a2.sources.r1.type = avro
 a2.sources.r1.bind = hadoop102
 a2.sources.r1.port = 4141
 
 a2.sinks.k1.type = logger
 
 a2.channels.c1.type = memory
 a2.channels.c1.capacity = 1000
 a2.channels.c1.transactionCapacity = 100
 
 a2.sinks.k1.channel = c1
 a2.sources.r1.channels = c1

103:

sudo vim /opt/module/flume/job/group4/flume3.conf
 a3.sources = r1
 a3.sinks = k1
 a3.channels = c1
 
 a3.sources.r1.type = avro
 a3.sources.r1.bind = hadoop103
 a3.sources.r1.port = 4242
 
 a3.sinks.k1.type = logger
 
 a3.channels.c1.type = memory
 a3.channels.c1.capacity = 1000
 a3.channels.c1.transactionCapacity = 100
 
 a3.sinks.k1.channel = c1
 a3.sources.r1.channels = c1

(4)分别在hadoop101,hadoop102,hadoop103上启动flume进程,注意先后顺序。

103:

bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group4/flume3.conf -Dflume.root.logger=INFO,console

102:

bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group4/flume2.conf -Dflume.root.logger=INFO,console

101:

bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group4/flume1.conf -Dflume.root.logger=INFO,console

(5)在hadoop101使用netcat向localhost:44444发送字母和数字。

(6)观察hadoop102和hadoop103打印的日志。

你可能感兴趣的:(Hadoop)