SparkStreaming例题

取材自官网http://Spark.apache.org

案例1:和集群搭配使用

package SparkStreaming

import java.io.{BufferedReader, InputStreamReader}
import java.net.Socket
import java.nio.charset.StandardCharsets

import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.receiver.Receiver

class CustomReceiver(host: String, port: Int)
  extends Receiver[String](StorageLevel.MEMORY_AND_DISK_2) {

  def onStart() {
    // Start the thread that receives data over a connection
    new Thread("Socket Receiver") {
      override def run() { receive() }
    }.start()
  }

  def onStop() {
    // There is nothing much to do as the thread calling receive()
    // is designed to stop by itself if isStopped() returns false
  }

  /** Create a socket connection and receive data until receiver is stopped */
  private def receive() {
    var socket: Socket = null
    var userInput: String = null
    try {
      // Connect to host:port
      socket = new Socket(host, port)

      // Until stopped or connection broken continue reading
      val reader = new BufferedReader(
        new InputStreamReader(socket.getInputStream(), StandardCharsets.UTF_8))
      userInput = reader.readLine()
      while(!isStopped && userInput != null) {
        store(userInput)
        userInput = reader.readLine()
      }
      reader.close()
      socket.close()

      // Restart in an attempt to connect again when server is active again
      restart("Trying to connect again")
    } catch {
      case e: java.net.ConnectException =>
        // restart if could not connect to server
        restart("Error connecting to " + host + ":" + port, e)
      case t: Throwable =>
        // restart if there is any other error
        restart("Error receiving data", t)
    }
  }
}

案例2:和集群搭配使用

package SparkStreaming

import org.apache.hadoop.fs.shell.Count
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

object NetworkSparkStreaming {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("nwc")
    val ssc = new StreamingContext(conf,Seconds(20))
    ssc.sparkContext.setLogLevel("ERROR")
    //val lines = ssc.socketTextStream("lion",1234)
    //val lines = ssc.textFileStream("hdfs://192.168.33.136:9000/wc/input/")
    ssc.checkpoint("d://123/eq")
    val lines = ssc.receiverStream(new CustomReceiver("lion",55555))
    val words = lines.flatMap(_.split(" "))
    val pairs = words.map(word =>(word,1))

    val wordcounts = pairs.reduceByKey(_+_)
    val res = wordcounts.updateStateByKey(updateFunction)
    res.print()
    ssc.start()
    ssc.awaitTermination()
    ssc.stop()
  }
  def updateFunction(newValues:Seq[Int],runningCount:Option[Int]): Option[Int] ={

    val newCounts = newValues.sum
    val sum = runningCount.getOrElse(0)
    Some(newCounts+sum)
  }
}

 

你可能感兴趣的:(SparkStreaming例题)