调研激光雷达在无人驾驶技术中的运用

电子科技大学 格拉斯哥学院 2017级 谢昌航

近年随着人工智能的普及,谷歌、特斯拉等无人驾驶技术的曝光,激光雷达也受到了广泛的关注。激光雷达,即光探测与测量,具有分辨率高、抗有源干扰能力强、低空探测性能好、体积小质量轻等特点。
随着技术的不断发展与普及,激光雷达的应用领域也越来越广泛,无人驾驶、人工智能、军事、3D打印、VR/AR等众多场景都可以看到它的身影。
近几年无人驾驶非常热门,而激光雷达可谓是无人驾驶领域中最重要的环节。无人驾驶汽车是通过车载传感系统感知环境,自动规划行车路线并控制车辆到达预定目标的智能汽车。目前,激光雷达的应用囊括了无人驾驶的定位、路沿/可行驶区域检测、车道标识线检测、障碍物检测、动态物体跟踪、障碍物分类识别等功能模块。机器人领域激光雷达又被称为机器人的眼睛。那么这双“眼睛”是怎么帮助机器人识别物体和方向的呢?它根据激光遇到障碍物后的折返时间,计算目标与自己的相对距离。激光光束可以准确测量视场中物体轮廓边沿与设备间的相对距离,这些轮廓信息组成所谓的点云并绘制出3D环境地图。例如,欢创科技的激光雷达精度已达到亚毫米级别,更好地帮助机器人提供服务。
但是对于无人驾驶技术,工程师们为了解决测距的问题,引入了激光传感器。这就是我们常在Level 3级别以上的无人车上看到的设备。比如通用用于研究Level 4级别自动驾驶技术的Bolts,就在车顶上顶了好多激光雷达。

激光雷达的分类
激光雷达根据安装位置的不同,分类两大类。一类安装在无人车的四周,另一类安装在无人车的车顶。
安装在无人车四周的激光雷达,其激光线束一般小于8,常见的有单线激光雷达和四线激光雷达。
安装在无人车车顶的激光雷达,其激光线束一般不小于16,常见的有16/32/64线激光雷达。

单线激光雷达
单线激光雷达是目前成本最低的激光雷达。成本低,意味着量产的可能性大。
前两天朋友圈刷屏的“北京首个自动驾驶测试场启用”新闻中出现的福田自动驾驶汽车就使用了4个单线激光雷达,分别布置于无人车的前后左右,用于车身周围障碍物的检测。
单束激光发射器在激光雷达内部进行匀速的旋转,每旋转一个小角度即发射一次激光,轮巡一定的角度后,就生成了一帧完整的数据。因此,单线激光雷达的数据可以看做是同一高度的一排点阵。
单线激光雷达的数据缺少一个维度,只能描述线状信息,无法描述面。如上图,可以知道激光雷达的面前有一块纸板,并且知道这块纸板相对激光雷达的距离,但是这块纸板的高度信息无从得知。

四线激光雷达
全新的奥迪A8为了实现Level 3级别的自动驾驶,也在汽车的进气格栅下布置的四线激光雷达ScaLa。
有了之前单线激光雷达的原理介绍,四线激光雷达的工作原理就很容易理解了。
四线激光雷达将四个激光发射器进行轮询,一个轮询周期后,得到一帧的激光点云数据。四条点云数据可以组成面状信息,这样就能够获取障碍物的高度信息。
根据单帧的点云坐标可得到障碍物的距离信息。
根据多帧的点云的坐标,对距离信息做微分处理,可得到障碍物的速度信息。
实际应用时,在购买激光雷达的产品后,其供应商也会提供配套的软件开发套件(SDK,Software Development Kit),这些软件开发套件能很方便地让使用者得到精准的点云数据,而且为了方便自动驾驶的开发,甚至会直接输出已经处理好的障碍物结果。

16/32/64线的激光雷达
16/32/64线的激光雷达的感知范围为360°,为了最大化地发挥他们的优势,常被安装在无人车的顶部。
360°的激光数据可视化后,就是大家经常在各种宣传图上看到的效果,如下图。
图中的每一个圆圈都是一个激光束产生的数据,激光雷达的线束越多,对物体的检测效果越好。比如64线的激光雷达产生的数据,将会更容易检测到路边的马路牙子。
16/32/64线的激光雷达只能提供原始的点云信号,没有对应的SDK直接输出障碍物结果。因此各大自动驾驶公司都在点云数据基础上,自行研究算法完成无人车的感知工作。
激光雷达的数据
激光雷达的点云数据结构比较简单。以N线激光雷达为例来讲解点云的数据结构。
在实际的无人驾驶系统中,每一帧的数据都会有时间戳,根据时间戳进行后续和时间有关的计算(如距离信息的微分等)。因此N线激光雷达的点云数据结构如下图。
每一线点云的数据结构又是由点云的数量和每一个点云的数据结构组成。由于激光雷达的数据采集频率和单线的点云数量都是可以设置的,因此1线点云数据中需要包含点云数量这个信息。
最底层的是单个点云的数据结构。点的表达既可以使用theta/r的极坐标表示,也可以使用x/y/z的3维坐标表示。
每个点云除了坐标外,还有一个很重要的元素,那就是激光的反射强度。激光在不同材料上的反射强度是不一样的。以3维坐标的表示方法为例,单个点云的数据结构如下图。X/Y/Z方向的偏移量是以激光雷达的安装位置作为原点。

激光雷达能做什么?

激光雷达点云数据的一般处理方式是:数据预处理(坐标转换,去噪声等),聚类(根据点云距离或反射强度),提取聚类后的特征,根据特征进行分类等后处理工作。

障碍物检测与分割

利用高精度地图限定感兴趣区域(ROI,Region of Interest)后,基于全卷积深度神经网络学习点云特征并预测障碍物的相关属性,得到前景障碍物检测与分割。

可通行空间检测

利用高精度地图限定ROI后,可以对ROI内部(比如可行驶道路和交叉口)的点云的高度及连续性信息进行判断点云处是否可通行。

高精度电子地图制图与定位

利用多线激光雷达的点云信息与地图采集车载组合惯导的信息,进行高精地图制作。自动驾驶汽车利用激光点云信息与高精度地图匹配,以此实现高精度定位。

障碍物轨迹预测

根据激光雷达的感知数据与障碍物所在车道的拓扑关系(道路连接关系)进行障碍物的轨迹预测,以此作为无人车规划(避障、换道、超车等)的判断依据。

无人驾驶作为人工智能的集大成应用, 从来就不是某单一的技术,而是众多技术点的整合。技术上它需要有算法上的创新、系统上的融合,以及来自云平台的支持。除了技术之外,无人驾驶的整条产业链也是刚刚开始,需要时间去发展。目前在市场上许多创业公司都是做全栈,做整车。但是如果产业链没发展成熟,做全栈与做整车公司的意义更多是Demo这项技术,而很难产品化。个人认为一个成熟的产业是应该有层次感的,上下游清晰,分工细致以达到更高的效率。但是今天无人驾驶行业还是混沌的,上下游不清晰,而且资本的热捧也导致了市场过热。但是相信通过几年的发展,当上下游发展清晰后,无人驾驶就可以真正产业化了。无人驾驶序幕刚启,其中有着千千万万的机会亟待发掘。预计在2020年,将有真正意义上的无人车开始面市,很可能是在园区以及高速公路等可控场景,然后到2040年,我们应该可以看到无人驾驶全面普及,让我们拭目以待。
当前人工智能的算法还不够成熟,纯视觉传感器的无人驾驶方案在安全性上还存在较多问题,因此现阶段的无人车的开发还离不开激光雷达。强如Google,目前不也还没开发出脱离激光雷达的自动驾驶方案么。
不过成本是激光雷达普及所遇到的最大问题。毕竟一款比车还贵的传感器是车企无法接受的。激光雷达的降本路任重道远啊。

你可能感兴趣的:(调研激光雷达在无人驾驶技术中的运用)