阿里云大数据工程师分享:这是最全的大数据学习路线!

大数据在近几年的发展速度确实超出人们的预料,自2014年3月“大数据”首次出现在《政府工作报告》中以来,国务院常务会议一年内6次提及大数据运用,而且不管是在数博会还是今年的G20当中,大数据“存在感”极高。

在高速发展的互联网行业中,大数据可以说热度日渐高涨,可以被认为是IT类职业中的"大熊猫"。大数据工程师因为稀缺被很多知名企业高价聘请,因为技术的魅力深受国家的重视,对于2019年的大数据就业发展前景是一直被人们看好的。就目前来看大数据工程师的收入待遇可以说达到了同类的顶级,以后的发展前景更是一片光明。

阿里云大数据工程师分享:这是最全的大数据学习路线!_第1张图片

想要在大数据这个领域汲取养分,让自己壮大成长。分享方向,行动以前先分享下一个大数据交流分享资源群870097548,欢迎想学习,想转行的,进阶中你加入学习。

 

 

大数据目前行业发展迅速,人才紧缺。2018年人民日报发文称:大数据人才需求180万,目前从业只有30万,人才缺口达到150万,这也是为什么大数据工资都如此之高的原因。

据观察,国内IT、通讯、行业招聘中,有10%都是和大数据相关的,且比例还在上升。

大数据时代的到来很突然,在国内发展势头迅猛,而人才却非常有限,现在完全是供不应求的状况。在美国,大数据工程师平均每年薪酬高达17.5万美元,而据了解,在国内顶尖互联网类公司,同一个级别大数据工程师的薪酬可能要比其他职位高20%至30%,且颇受企业重视。

阿里云大数据工程师分享:这是最全的大数据学习路线!_第2张图片

 

想要学习大数据的小伙伴可以按照这个路线走,是2019新更新的一版,大家可以放心学习,共分为以下五个阶段的学习:

(现在这套学习教程限时赠送:只需转发+关注,然后私信小编“资料”即可获取哦

阶段一、 Java语言基础

Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类

阶段二、 HTML、CSS与Java

PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用

阶段三、 JavaWeb和数据库

数据库、JavaWeb开发核心、JavaWeb开发内幕

阶段四、 LinuxHadoopt体系

Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架

阶段五、 实战(一线公司真实项目)

数据获取、数据处理、数据分析、数据展现、数据应用

阶段六、 Spark生态体系

Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(www.sina.com.cn)

阶段七、 Storm生态体系

storm技术架构体系、Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战

阶段八、 大数据分析 —AI(人工智能)

Data Analyze工作环境准备数据分析基础、数据可视化、Python机器学习

1、Python机器学习2、图像识别神经网络、自然语言处理社交网络处理、实战项目:户外设备识别分析

大数据真的是一门神奇的学科,似乎学好大数据就能踏遍互联网的大部分领域。就像当下很火的区块链、人工智能等等都是跟大数据技术息息相关。每一个想学习大数据的小伙伴,都是未来不可多得的人才,快用技术征服世界吧。

一、Hadoop入门,了解什么是Hadoop

1、Hadoop产生背景

2、Hadoop在大数据、云计算中的位置和关系

3、国内外Hadoop应用案例介绍

4、国内Hadoop的就业情况分析及课程大纲介绍

5、分布式系统概述

6、Hadoop生态圈以及各组成部分的简介

7、Hadoop核心MapReduce例子说明

二、分布式文件系统HDFS,是数据库管理员的基础课程

1、分布式文件系统HDFS简介

2、HDFS的系统组成介绍

3、HDFS的组成部分详解

4、副本存放策略及路由规则

5、NameNode Federation

6、命令行接口

7、Java接口

8、客户端与HDFS的数据流讲解

9、HDFS的可用性(HA)

三、初级MapReduce,成为Hadoop开发人员的基础课程

1、如何理解map、reduce计算模型

2、剖析伪分布式下MapReduce作业的执行过程

3、Yarn模型

4、序列化

5、MapReduce的类型与格式

6、MapReduce开发环境搭建

7、MapReduce应用开发

8、更多示例讲解,熟悉MapReduce算法原理

四、高级MapReduce,高级Hadoop开发人员的关键课程

1、使用压缩分隔减少输入规模

2、利用Combiner减少中间数据

3、编写Partitioner优化负载均衡

4、如何自定义排序规则

5、如何自定义分组规则

6、MapReduce优化

7、编程实战

五、Hadoop集群与管理,是数据库管理员的高级课程

1、Hadoop集群的搭建

2、Hadoop集群的监控

3、Hadoop集群的管理

4、集群下运行MapReduce程序

六、ZooKeeper基础知识,构建分布式系统的基础框架

1、ZooKeeper体现结构

2、ZooKeeper集群的安装

3、操作ZooKeeper

七、HBase基础知识,面向列的实时分布式数据库

1、HBase定义

2、HBase与RDBMS的对比

3、数据模型

4、系统架构

5、HBase上的MapReduce

6、表的设计

八、HBase集群及其管理

1、集群的搭建过程讲解

2、集群的监控

3、集群的管理

九、HBase客户端

1、HBase Shell以及演示

2、Java客户端以及代码演示

十、Pig基础知识,进行Hadoop计算的另一种框架

1、Pig概述

2、安装Pig

3、使用Pig完成手机流量统计业务

十一、Hive,使用SQL进行计算的Hadoop框架

1、数据仓库基础知识

2、Hive定义

3、Hive体系结构简介

4、Hive集群

5、客户端简介

6、HiveQL定义

7、HiveQL与SQL的比较

8、数据类型

9、表与表分区概念

10、表的操作与CLI客户端演示

11、数据导入与CLI客户端演示

12、查询数据与CLI客户端演示

13、数据的连接与CLI客户端演示

14、用户自定义函数(UDF)的开发与演示

十二、Sqoop,Hadoop与rdbms进行数据转换的框架

1、配置Sqoop

2、使用Sqoop把数据从MySQL导入到HDFS中

3、使用Sqoop把数据从HDFS导出到MySQL中

十三、Storm

1、Storm基础知识:包括Storm的基本概念和Storm应用

场景,体系结构与基本原理,Storm和Hadoop的对比

2、Storm集群搭建:详细讲述Storm集群的安装和安装时常见问题

3、Storm组件介绍: spout、bolt、stream groupings等

4、Storm消息可靠性:消息失败的重发

5、Hadoop 2.0和Storm的整合:Storm on YARN

6、Storm编程实战

感觉不错的话赶紧收藏起来学习吧

你可能感兴趣的:(大数据学习,程序员,spark,编程语言,web开发,大数据,大数据开发,Hadoop,linux,Hive)