电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)

First-Order Circuits

  • 7.1 Introduction
    • RC circuits(动态电路及其阶数)
    • RL circuits
    • 总结
    • 例题
  • 7.2 The Source-Free(无源) RC Circuit(RC电路的零输入响应)
  • 7.3 The Source-Free RL Circuit(RL电路的无源响应)
  • 7.4 Singularity Functions
    • unit step functions
    • unit impulse functions
    • unit ramp functions
  • 7.5 Step Response(阶跃) of RC Circuit
    • Step response
    • Forced response (Zero-state response)
  • 7.6 Step Response of RL Circuit
  • 7.7 Complete Response
    • 1. Decomposition of complete response (全响应的分解)
    • 2.Determining response with 3 items(三要素法)
    • Applications
      • 1.Delay Circuits
      • 2.Photoflash Unit
      • 3.Relay Circuits
      • 4.Automobile Ignition Circuit
  • 总结

7.1 Introduction

Two types of simple circuits:a circuit comprising a resistor and capactior and a circuit comprising a resistor and an inductor.
These are called RC and RL circuits,respectively.
Resistive circuits
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第1张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第2张图片
注释:损变
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第3张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第4张图片

RC circuits(动态电路及其阶数)

动态电路:含有动态元件(电容或电感)的电路
特征:当电路的结构或参数改变时,电路可能从一种工作状态转变到另一种工作状态
换路:电路的结构或参数改变
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第5张图片
Before switching k,circuit has reached steady state:
i = 0 , u c = 0 i=0,u_c=0 i=0,uc=0
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第6张图片
Since k has been closed for a long time,the capacitor voltage has reached steady state again:
i = 0 , u c = U s i=0,u_c=U_s i=0,uc=Us
过渡过程:电路由一个稳态过渡到另一个稳态的过程
过渡状态(瞬态,暂态,动态)
过渡过程产生原因:电路内部含有储能元件 ,电路在换时能量 电路在换时能量 电路在换时能量 发生变化,而能量的储存和释放都需要时间
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第7张图片
研究过渡过程具有实际意义
利用:产生各种波形
提防:暂态过程瞬间可能出现高电压,大电流,使仪器设备损坏

动态电路的阶数
描述动态电路的方程是微分方程
方程阶数=电路阶数
一阶电路:描述电路的方程是一阶微分方程,一阶电路中一般只有一个动态元件
二阶电路:描述电路的方程是二阶微分方程,一般有二个动态元件

;电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第8张图片
应 用 K V L : R i + u c = u s 电 容 V C R : i = C d u c d t R C d u c d t + u c = u s 一 阶 微 分 方 程 也 即 一 阶 电 路 方 程 的 阶 数 通 常 等 于 电 路 中 动 态 元 件 的 个 数 应用KVL:Ri+u_c=u_s\\ 电容VCR:i=C\frac{du_c}{dt}\\ RC\frac{du_c}{dt}+u_c=u_s\\ 一阶微分方程也即一阶电路\\ 方程的阶数通常等于电路中动态元件的个数 KVL:Ri+uc=usVCR:i=CdtducRCdtduc+uc=us
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第9张图片
R ( C 1 + C 2 ) d u c d t + u c = u s R(C_1+C_2)\frac{du_c}{dt}+u_c=u_s R(C1+C2)dtduc+uc=us
一阶电路

动态电路分析方法:

  1. 时域分析法
    经典法:直接求解常微分方程
    状态变量法
    数值法
  2. 变换法
    傅里叶变换法:频域分析法
    拉普拉斯变换法:复频域分析法

RL circuits

Before switching k,circuit has reached steady state:
i = 0 , u L = 0 i=0,u_L=0 i=0,uL=0
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第10张图片
Since k has been closed for a long time,the capacitor voltage has reached steady state again
u L = 0 , i = U s R u_L=0,i=\frac{U_s}{R} uL=0,i=RUs
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第11张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第12张图片
Applying Kirchhoff’s laws to purely resistive circuits results in algebraic equations

While applying Kirchhoff’s laws to RC and RL circuits produces differential equations(微分方程)

The differential equations resulting from analyzing RC and RL circuits are of the first order.Hence.the circuits are collectively known as first-order circuits.

A first-order circuit is characterized by a first-order differential equation.

RC circuits
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第13张图片
Applying KVL:
R i + u c = u s ( t ) Ri+u_c=u_s(t) Ri+uc=us(t)
By definition(定义)(VCR):
i = C d u c d t   → R C d u c d t + u c = u s ( t )   → R d i d t + i C = d u s ( t ) d t i=C\frac{du_c}{dt}\\ ~\\ →RC\frac{du_c}{dt}+u_c=u_s(t)\\ ~\\ →R\frac{di}{dt}+\frac{i}{C}=\frac{du_s(t)}{dt} i=Cdtduc RCdtduc+uc=us(t) Rdtdi+Ci=dtdus(t)

RL circuits
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第14张图片
Applying KVL:
R i + u L = u s ( t ) Ri+u_L=u_s(t) Ri+uL=us(t)
By definition(定义)(VCR):
u L = L d i d t   → R i + L d i d t = u s ( t )   → R L u l + d u L d t = d u s ( t ) d t u_L=L\frac{di}{dt}\\ ~\\ →Ri+L\frac{di}{dt}=u_s(t)\\ ~\\ →\frac{R}{L}u_l+\frac{du_L}{dt}=\frac{du_s(t)}{dt} uL=Ldtdi Ri+Ldtdi=us(t) LRul+dtduL=dtdus(t)

Initial Conditions(初状态)
Assuming that the switching takes place at time t0
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第15张图片
初始条件的选择,0-的时候应该达到稳态,即0处应该连续.
RC circuits
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第16张图片
注释:电荷守恒.
RL circuits
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第17张图片
注释:磁通守恒.
由于电阻的电压电流可以跃变,电容不可以.

总结

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第18张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第19张图片

例题

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第20张图片
先换路定律 u c 0 + 或 l 0 + ( u c 0 + = u v ) ) u_c0+或l_0+(u_c0+=uv)) uc0+l0+(uc0+=uv))
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第21张图片
换路定律
Steps to Determine Initial Conditions:

  1. 0-:uc(0-),iL(0-)
    RC:
    Substitude the capacitor with an open circuit
    RL:
    Substitude the inductor with a short circuit
  2. { u c ( 0 + ) = u c ( 0 − ) i L ( 0 + ) = i L ( 0 − ) \begin{cases} u_c(0_+)=u_c(0_-)\\ i_L(0_+)=i_L(0_-) \end{cases} {uc(0+)=uc(0)iL(0+)=iL(0)
  3. 0+
    RC:
    Substitude the capacitor with a voltage source
    RL:
    Subtitude the inductor with a current source
    Direction of the source!

动态电路的换路定律

  1. 换路:电路结构或状态发生变化
    换路在t=0或t=t0时刻进行
  2. 换路定律
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第22张图片
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第23张图片
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第24张图片
    换路定律总结
    当电容电流为有限值时,电容电压不跃变
    当电感电压为有限值时,电感电流不跃变
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第25张图片
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第26张图片
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第27张图片
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第28张图片
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第29张图片

7.2 The Source-Free(无源) RC Circuit(RC电路的零输入响应)

Response
A circuit response is the manner in which the circuit reacts to an excitation.
Two ways to excite the first-order circuits:
by independent sources
by initial conditions of the storage elements in the circuits(so-called source-free circuits(无源电路))

Source-free circuits
Source-free circuits are by definition free of independent sources.
Energy is initially stored in the capacitive or inductive element.
The circuits is excited by initial conditions of the storage elements in the circuits.

Natural(Zero-input) response
The natural response of a circuit refers to the behavior (in terms of voltages and currents) of the circuit itself,with no external sources of excitation.

零输入响应:
输入(激励,独立电源)为0,仅由储能元件的初始储能引起的响应
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第30张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第31张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第32张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第33张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第34张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第35张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第36张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第37张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第38张图片
Source-Free RC Circuit
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第39张图片
{ − u R + u C = 0 u R = R i              → R C d u c d t + u c = 0 i = − C d u c d t u c = A e p t = A e − 1 R C t \begin{cases} -u_R+u_C=0\\ u_R=Ri~~~~~~~~~~~~→RC\frac{du_c}{dt}+u_c=0\\ i=-C\frac{du_c}{dt} \end{cases}\\ u_c=Ae^{pt}=Ae^{-\frac{1}{RC}t} uR+uC=0uR=Ri            RCdtduc+uc=0i=Cdtducuc=Aept=AeRC1t
Initial conditions:
u C ( 0 + ) = u C ( 0 − ) = U 0 → A = U 0 u C = U 0 e − t R C   t ≥ 0 i = − C d u C d t = − C U 0 e − t R C ( − 1 R C ) = U 0 R e − t R C   t ≥ 0 o r i = u C R = U 0 R e − t R C = I 0 e − t R C   t ≥ 0 u_C(0_+)=u_C(0_-)=U_0→A=U_0\\ u_C=U_0e^{-\frac{t}{RC}}~t≥0\\ i=-C\frac{du_C}{dt}=-CU_0e^{-\frac{t}{RC}}(-\frac{1}{RC})=\frac{U_0}{R}e^{-\frac{t}{RC}}~t≥0\\ or\\ i=\frac{u_C}{R}=\frac{U_0}{R}e^{-\frac{t}{RC}}=I_0e^{-\frac{t}{RC}}~t≥0 uC(0+)=uC(0)=U0A=U0uC=U0eRCt t0i=CdtduC=CU0eRCt(RC1)=RU0eRCt t0ori=RuC=RU0eRCt=I0eRCt t0
总结
u c = U 0 e − t R C = U 0 e − t τ    t ≥ 0 i = I 0 e − t R C = I 0 e − t τ    t ≥ 0 u_c=U_0e^{-\frac{t}{RC}}=U_0e{-\frac{t}{τ}}~~t≥0\\ i=I_0e^{-\frac{t}{RC}}=I_0e^{-\frac{t}{τ}}~~t≥0 uc=U0eRCt=U0eτt  t0i=I0eRCt=I0eτt  t0
Note

  1. Voltage response of the RC circuit is an exponential decay of the initial voltage.
    Current response of the RC circuit is the same exponential decay of the initial current.
  2. The energy absorbed by the resistor up to time ∞:
    W R = ∫ 0 ∞ i 2 R d t = ∫ 0 ∞ ( U 0 R e − t R C ) 2 = U 0 2 R ∫ 0 ∞ e − 2 t R C = U 0 2 R ( − R C 2 e − 2 t R C ) ∣ 0 ∞ = 1 2 C U 0 2 \large W_R=∫_0^∞ i^2 Rdt=∫_0^∞ (\frac{U_0}{R}e^{-\frac{t}{RC}})^2=\frac{U_0^2}{R}∫_0^∞ e^{-\frac{2t}{RC}}=\frac{U_0^2}{R}(-\frac{RC}{2}e^{-\frac{2t}{RC}})|_0^∞=\frac{1}{2}CU_0^2 WR=0i2Rdt=0(RU0eRCt)2=RU020eRC2t=RU02(2RCeRC2t)0=21CU02
  3. a: τ τ τ:is the time required for the response to decay to a factor of 1 e \frac{1}{e} e1 or 36.8 percent of its initial value
    τ = R C τ=RC τ=RC
    the smaller the τ,the faster the response
    u c ( t + τ ) = u c ( t ) e = 0.368 u c ( t ) i ( t + τ ) = i ( t e = 0.368 i ( t ) 3 τ → 5 τ → f i n a l s t a t e o r s t e a t y s t a t e ( f u l l y d i s c h a r g e d o r c h a r g e d ) u_c(t+τ)=\frac{u_c(t)}{e}=0.368u_c(t)\\ i(t+τ)=\frac{i(t}{e}=0.368i(t)\\ 3τ→5τ→final state or steaty state(fully discharged or charged) uc(t+τ)=euc(t)=0.368uc(t)i(t+τ)=ei(t=0.368i(t)3τ5τfinalstateorsteatystate(fullydischargedorcharged)
    b:τ:viewed from the slope interpretation rate of t1:
    电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第40张图片

7.3 The Source-Free RL Circuit(RL电路的无源响应)

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第41张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第42张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第43张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第44张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第45张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第46张图片
在这里插入图片描述
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第47张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第48张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第49张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第50张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第51张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第52张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第53张图片

7.4 Singularity Functions

Singularity functions (also called switching functions) serve as good approximations to the switching signals that arise in circuits with switching operations.

Singularity functions are functions that either are discontinuous or have discontinuous derivatives.

The three most widely used singularity functions in circuit analysis:

unit step functions

The unit step function ε(t) is 0 for negative values of t and 1 for positive values of t.
ε ( t ) = { 0     ( t < 0 ) 0     ( t > 0 ) ε(t)=\begin{cases} 0~~~(t<0)\\ 0~~~(t>0) \end{cases} ε(t)={0   (t<0)0   (t>0)
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第54张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第55张图片

unit impulse functions

The unit impulse function δ(t) is zero everywhere except at t=0,where it is undefined.

{ δ ( t ) = 0     ( t ≠ 0 ) ∫ − ∞ ∞ δ ( t ) d t = 1 \begin{cases} δ(t)=0~~~(t≠0)\\ ∫_{-∞}^∞ δ(t)dt=1 \end{cases} {δ(t)=0   (t=0)δ(t)dt=1
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第56张图片
Integrating(积分) the unit impulse function result in the unit step function
∫ − ∞ t δ ( t ) d t = { 0     t < 0 − 1     t > 0 + = ε ( t ) ∫_{-∞}^tδ(t)dt= \begin{cases} 0~~~t<0_-\\ 1~~~t>0_+ \end{cases} =ε(t) tδ(t)dt={0   t<01   t>0+=ε(t)
The derivative(微分) of the unit step function is the unit impulse function.
d ε ( t ) d t = δ ( t ) \frac{dε(t)}{dt}=δ(t) dtdε(t)=δ(t)

unit ramp functions

Highly useful property of θ impulse function known as the sampling or shifting preperty.
∫ ∞ ∞ f ( t ) δ ( t ) d t = f ( 0 ) ∫ ∞ ∞ δ ( t ) d t = f ( 0 ) ∫_{∞}^{∞}f(t)δ(t)dt=f(0)∫_{∞}^{∞}δ(t)dt=f(0) f(t)δ(t)dt=f(0)δ(t)dt=f(0)
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第57张图片
∫ ∞ ∞ f ( t ) δ ( t − t 0 ) d t = f ( t 0 ) ∫_{∞}^{∞}f(t)δ(t-t_0)dt=f(t_0) f(t)δ(tt0)dt=f(t0)

7.5 Step Response(阶跃) of RC Circuit

Step response

The step response of a circuit is its behavior when the excitation is the step function,which may be a voltage or a current source.

Forced response (Zero-state response)

零状态响应:储能元件的初始储能为0,响应全部由外加激励引起
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第58张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第59张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第60张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第61张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第62张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第63张图片
The response of the circuits due to asudden application of an independent dc voltage or current source,assuming no energy is initially stored in the capacitive or inductive element.

It is produced by the circuit when an external “force” is applied.
It represents what the circuit is forced to do by the input excitation.电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第64张图片
The transient response is temporary ;it is the portion of the response that decays to zero as time approaches infinity.Thus,
The transient response is the circuit’s temporary response that will die out with time.
The steady-state response is the portion of the response that remains after the transient response has died out.Thus,
The steady-state response is the behavior of the circuit a long time after an external excitation is applied.

7.6 Step Response of RL Circuit

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第65张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第66张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第67张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第68张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第69张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第70张图片

7.7 Complete Response

Complete response (or total response)
Response of circuits due to a sudden application of an independent dc voltage or current source ,assuming the energy is initially stored in the capacitive or inductive element.
全响应:非零初始状态的电路受到外加激励引起的响应
初始状态和输入共同作用
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第71张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第72张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第73张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第74张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第75张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第76张图片

1. Decomposition of complete response (全响应的分解)

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第77张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第78张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第79张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第80张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第81张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第82张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第83张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第84张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第85张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第86张图片
It is evident that the complete response has two components.
Classically there are two ways of decomposing this into two components.
The first is to break it into a “natural response” and a “forced response”.
The second is to break it into a “transient response” and a “steady-state response”.
u c = u c ′ + u c ′ ′ = U S + ( U 0 − U S ) e − t τ     t ≥ 0 u_c=u'_c+u''_c=U_S+(U_0-U_S)e^{-\frac{t}{τ}}~~~t≥0 uc=uc+uc=US+(U0US)eτt   t0
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第87张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第88张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第89张图片
电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第90张图片

2.Determining response with 3 items(三要素法)

Differential equation of first-order circuits:
α d f d t + b f = c α\frac{df}{dt}+bf=c αdtdf+bf=c
DC:
→ f ( t ) = f ( ∞ ) + [ f ( 0 + ) − f ( ∞ ) ] ⏞ A e − t τ →f(t)=f(∞)+\overbrace {[f(0_+)-f(∞)]}^A e^{-\frac{t}{τ}} f(t)=f()+[f(0+)f()] Aeτt
{ f ( ∞ )   → s t e a d y − s t a t e r e s p o n s e : t → ∞ f ( 0 + ) → i n i t i a l   c o n d i t i o n : t = 0 + τ          → t i m e   c o n s t a n t : t = 0 + \begin{cases} f(∞)~→steady-state response:t→∞\\ f(0_+)→initial~condition:t=0_+\\ τ~~~~~~~~→time~constant:t=0_+ \end{cases} f() steadystateresponse:tf(0+)initial condition:t=0+τ        time constant:t=0+
Once these 3 items are determined,the response are determined.

Applications

1.Delay Circuits

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第91张图片

2.Photoflash Unit

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第92张图片

3.Relay Circuits

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第93张图片

4.Automobile Ignition Circuit

电路Circuit-> Chapter 7 First-Order Circuits(一阶电路)_第94张图片

总结

一 阶 电 路 { 零 输 入 响 应 : f ( 0 ) e − t τ 零 状 态 响 应 : f ( ∞ ) ( 1 − e t τ ) 全 响 应 : f ( t ) = f ( ∞ ) + [ f ( 0 + ) − f ( ∞ ) ] e − t τ    ( 零 输 入 响 应 + 零 状 态 响 应 ) f ( t ) = f ′ ( t ) + [ f ( 0 + ) − f ′ ( 0 + ) ] e − t τ 正 弦 电 源 激 励 下 一阶电路\begin{cases} 零输入响应:f(0)e^{-\frac{t}{τ}}\\ 零状态响应:f(∞)(1-e^{\frac{t}{τ}})\\ 全响应:f(t)=f(∞)+[f(0_+)-f(∞)]e^{-\frac{t}{τ}}~~(零输入响应+零状态响应)\\ f(t)=f'(t)+[f(0_+)-f'(0_+)]e^{-\frac{t}{τ}} 正弦电源激励下 \end{cases} :f(0)eτt:f()(1eτt):f(t)=f()+[f(0+)f()]eτt  (+)f(t)=f(t)+[f(0+)f(0+)]eτt
全 响 应 = { f ( t ) = f ( ∞ ) + [ f ( 0 + ) − f ( ∞ ) ] e − t τ ( 零 输 入 响 应 ) + ( 零 状 态 响 应 ) f ( ∞ ) + ( f ( 0 − ) − f ( ∞ ) ) e − t τ ( 强 制 分 量 ) + ( 自 由 分 量 ) ( 稳 态 分 量 ) + ( 瞬 态 分 量 ) 全响应= \begin{cases} f(t)=f(∞)+[f(0_+)-f(∞)]e^{-\frac{t}{τ}}(零输入响应)+(零状态响应)\\ f(∞)+(f(0_-)-f(∞))e^{-\frac{t}{τ}}(强制分量)+(自由分量)\\ (稳态分量)+(瞬态分量) \end{cases} =f(t)=f()+[f(0+)f()]eτt()+()f()+(f(0)f())eτt()+()()+()

你可能感兴趣的:(电路学习笔记)