- 机器学习之——认识机器学习
-睡到自然醒~
golang重构开发语言
首先,什么是机器学习?参照百度百科的讲解,“机器学习是一门多领域交叉学科,设计概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习能力,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。”什么意思呢?也就是说,机器学习是一门跨领域的学科,是一种能够让机器模仿人类学习能力的一种学科。在Andrew的课程中,提到了几个机器学习的定义:1,A
- Python --- day 10 Opencv模块的使用
AnAn__kang
pythonopencv开发语言
系列文章目录前言今天博主带大家进入Opencv的学习,这是一个专门针对处理图像和视频的一个模块,大家以理解为主,增强自己的编程思维,再后续我们训练模型时会大批量的处理图片时会经常用到这个模块。1OpenCV介绍OpenCV(开放源代码计算机视觉库)是一个开源的计算机视觉和机器学习软件库。由一系列C++类和函数构成,用于图像处理、计算机视觉领域的算法实现。1.1OpenCV优势**开源免费:**完全
- 时序数据库在数据库领域的行业应用
数据库管理艺术
数据库时序数据库ai
时序数据库在数据库领域的行业应用关键词:时序数据库、数据库领域、行业应用、时间序列数据、实时分析摘要:本文深入探讨了时序数据库在数据库领域的行业应用。首先介绍了时序数据库的背景知识,包括其目的、适用读者、文档结构和相关术语。接着阐述了时序数据库的核心概念、架构和工作原理,通过Python代码详细讲解了核心算法。还介绍了相关的数学模型和公式,并举例说明。在项目实战部分,给出了开发环境搭建、源代码实现
- Python --- Day3 推导式及 常见语句和内置函数的学习!!!
系列文章目录前言相信各位伙伴们在前俩次的文章和Python的基础学习中大有收获,这次我们将进入推导式,常见语句和内置函数的学习!跟着博主一起成为一名Ai的算法工程师!一、推导式用更简洁的方式创建列表、字典和集合。是Python特有的一种表达式形式。1.1列表推导式a=[1,2,3,4]result=[x*2forxina]#创建一个新列表,元素是原列表每个元素的两倍1.2字典推导式a=['a','
- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 机器学习数据预处理阶段为什么需要——归一化处理
参考:https://www.cnblogs.com/bjwu/p/8977141.html通常,在DataScience中,预处理数据有一个很关键的步骤就是数据的标准化。这里主要引用sklearn文档中的一些东西来说明,主要把各个标准化方法的应用场景以及优缺点总结概括,以来充当笔记。提升模型精度在机器学习算法的目标函数(例如SVM的RBF内核或线性模型的l1和l2正则化),许多学习算法中目标函数
- 48Days-Day03 | 删除公共字符,两个链表的第一个公共结点,mari和shiny
TinaAmber
笔试训练48Days链表java算法
删除公共字符删除公共字符_牛客题霸_牛客网算法思路直接哈希,把第二个字符塞集合里面,遍历第一个,只要在集合里面有的就跳过代码importjava.util.HashSet;importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]args){Scannerscan=newScanner(System.in);Strin
- 李航老师-统计学习
小三爷_df1b
三个准则1.作为入门选手,不要每章都看2.不要从零造轮子去实现算法,太浪费时间3.必须能手推公式章节目录##统计学习概论-统计学习的目的是对数据进行==预测与分析==-统计学习的前提是同类数据具有一定的统计规律性-统计学习的方法-监督学习(supervisedlearning)-非监督学习(unsupervisedlearning)-半监督学习(semi-supervisedlearning)-强
- 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
Ryan_sz1
1、过拟合、欠拟合及其解决方案过拟合、欠拟合机器学习或者训练深度神经网络的时候经常会出现欠拟合和过拟合这两个问题,但是,一开始我们的模型往往是欠拟合的,也正是因为如此才有了优化的空间,我们需要不断的调整算法来使得模型的表达能拿更强。但是优化到了一定程度就需要解决过拟合的问题了。也就是说欠拟合是模型表达能力不够,达不到很好的表达效果。而过拟合是在训练集的范围内表达能力过强,导致完全拟合了训练集。解决
- InPixio Photo Maximizer(图片无损放大软件) v5.3.8625 便携版
InPixioPhotoMaximizer是一款用于放大和增强照片的软件。它提供了一系列功能和特点,使用户能够通过增大分辨率和细节来改善照片的质量和清晰度。软件功能图像放大:通过使用高级算法,可以将照片放大到原始分辨率的4倍,而保持良好的清晰度和细节。细节增强:通过增加图像的细节和锐度,可以改善照片的质量,并使图像更加清晰和逼真。手动调整:用户可以使用软件的手动调整工具,根据自己的需求进行尺寸和细
- “专属私有云”或“行业公有云(逻辑隔离的公共云专区)”两种主流部署模式到底有什么区别?政务云不就应该是专属的私有云么?政务云是不是不能混用?
一、安全合规性要求分层,驱动部署模式分化核心敏感系统需物理隔离(专属私有云)涉及公民隐私、国家安全(如公安、财政、医保核心数据库)的系统,必须通过物理隔离的专属私有云保障绝对控制权。例如:浦东新区公安局的涉密数据采用自建私有云,确保数据完全自主管控3。某省地市政务云要求核心业务部署在信创私有云,满足等保三级和国密算法评估要求5。非敏感公共服务适用逻辑隔离(行业公有云)面向公众的服务(如社保查询、线
- AES加密算法简要介绍
° 安如少年初如梦662
Java学习记录后端前端
前言项目中需要在接口中添加加密,简单了解关于AES的有关知识,低质低创见谅。什么是AESAES(AdvancedEncryptionStandard,高级加密标准)是一种对称加密算法,被广泛应用于数据加密领域。它是由美国国家标准与技术研究院(NIST)于2001年发布,作为一种公开标准,用于保护电子数据的安全。值得一提的是微信小程序的加密传输就是用这个加密算法基本原理和加解密过程由于站内有很详细,
- 格灵深瞳视觉算法面试30问全景精解
机 _ 长
算法面试职场和发展
格灵深瞳视觉算法面试30问全景精解——AI感知×智能安防×场景创新:格灵深瞳视觉算法面试核心考点全览前言格灵深瞳(GREATVISION)作为国内领先的人工智能与计算机视觉企业,专注于智慧安防、智能交通、智慧零售等领域,推动视觉算法在大规模城市级场景的落地。格灵深瞳视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在复杂场景下的创新能力与工程实践。本文精选30个高质量面试问题,涵盖基
- 商汤科技视觉算法面试30问全景精解
商汤科技视觉算法面试30问全景精解——AI赋能×智能视觉×产业创新:商汤科技视觉算法面试核心考点全览前言商汤科技(SenseTime)作为全球领先的人工智能平台公司,专注于计算机视觉、深度学习和智慧城市、智能汽车、智能医疗等领域,推动人脸识别、目标检测、视频分析、自动驾驶等前沿技术的产业化落地。商汤视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、自动驾驶、智慧医疗等复
- 旷视科技视觉算法面试30问全景精解
机 _ 长
科技算法面试深度学习YOLO
旷视科技视觉算法面试30问全景精解——AI赋能×智能安防×视觉创新:旷视科技视觉算法面试核心考点全览前言旷视科技(Megvii)作为全球领先的人工智能公司,专注于计算机视觉、深度学习和智能安防等领域,推动人脸识别、目标检测、视频分析、工业视觉等前沿技术的产业化落地。旷视视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、工业检测、智慧城市等复杂场景下的创新与工程能力。本文
- 蔚来汽车视觉算法面试30问全景精解
蔚来汽车视觉算法面试30问全景精解——智能电动×高阶辅助驾驶×视觉创新:蔚来汽车视觉算法面试核心考点全览前言蔚来汽车作为全球领先的智能电动汽车品牌,致力于通过AI与高阶辅助驾驶技术推动智能出行的未来。蔚来视觉算法团队专注于自动驾驶感知、智能座舱、车路协同、3D重建等领域,强调算法的工程落地、系统安全与创新突破。蔚来视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在自动驾驶、智能感知
- 深入解析Hadoop中的推测执行:原理、算法与策略
码字的字节
hadoop布道师hadoop算法推测执行
Hadoop推测执行概述在分布式计算环境中,任务执行速度的不均衡是一个普遍存在的挑战。Hadoop作为主流的大数据处理框架,通过引入推测执行(SpeculativeExecution)机制有效缓解了这一问题。该技术本质上是一种乐观的容错策略,当系统检测到某些任务执行明显落后于预期进度时,会自动在其它计算节点上启动相同任务的冗余副本,最终选择最先完成的任务结果作为输出。核心设计动机推测执行的诞生源于
- 第六届研究所圆梦反击战分仓方案老姜(姜新宁)算力3.0虚假投资真实惨痛经历为大家揭开
法律咨询维权
诈骗团伙成员根据“剧情需要”,扮演不同角色与股民聊天,“讲师”进行“炒股授课”,“水军”号假扮新手股民、资深股民在群内互动吹捧“老师”,诱导被害人在虚假平台投资。慈善投票网站买数字的等等都是骗局,广大市民对此要提高警惕,遇到此类情况一概不要相信。(注明:该文章出现名字为网上冒充行骗,跟当事人无关,如果涉及侵权,可以联系作者及时删除)Workplus六年级班云算力,云计算老姜,姜新宁云端算法骗局揭晓
- 深度强化学习 | 图文详细推导深度确定性策略梯度DDPG算法
Mr.Winter`
机器人人工智能数据挖掘深度学习神经网络强化学习具身智能
目录0专栏介绍1演员-评论家架构1.1Critic网络优化1.2Actor网络优化2深度确定性策略梯度算法0专栏介绍本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学
- 大模型软件的多租户架构设计
AI天才研究院
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型软件的多租户架构设计关键词:大模型软件、多租户架构、设计、性能优化、安全性摘要:随着大数据和人工智能技术的迅猛发展,大模型软件在各个领域得到了广泛应用。然而,如何在大模型软件中实现高效的多租户架构设计,成为当前技术领域的一个关键挑战。本文将深入探讨大模型软件的多租户架构设计,包括其背景、核心概念、算法原理、系统架构、项目实战以及最佳实践等,旨在为开发者提供一套系统化、全面化的设计指南。设计过
- 鸿蒙应用App Linking优化:深度链接性能
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
鸿蒙应用AppLinking优化:深度链接性能关键词:鸿蒙系统、AppLinking、深度链接、性能优化、路由匹配、参数解析、冷启动优化摘要:本文深入探讨鸿蒙系统下AppLinking深度链接的性能优化策略。从核心概念解析出发,详细阐述深度链接在鸿蒙架构中的实现原理,包括Ability路由机制、链接解析算法和参数传递模型。通过数学模型分析路由匹配复杂度,结合Python算法示例演示链接解析过程。基
- Eureka 为大数据领域服务治理带来的新思路
大数据洞察
大数据AI应用大数据与AI人工智能eureka大数据云原生ai
Eureka为大数据领域服务治理带来的新思路关键词:Eureka,大数据,服务治理,分布式系统,微服务摘要:本文深入探讨了Eureka为大数据领域服务治理带来的新思路。首先介绍了大数据领域服务治理的背景和现状,阐述了Eureka的核心概念与工作原理。接着详细分析了Eureka核心算法原理,结合Python代码进行说明,并给出相关数学模型和公式。通过项目实战案例,展示了Eureka在大数据服务治理中
- Flink在物联网实时大数据处理中的最佳实践
大数据洞察
大数据AI应用大数据与AI人工智能flink物联网strutsai
Flink在物联网实时大数据处理中的最佳实践关键词:Flink、物联网、实时大数据处理、最佳实践、数据流摘要:本文围绕Flink在物联网实时大数据处理中的最佳实践展开。首先介绍了相关背景知识,接着深入浅出地解释了Flink、物联网和实时大数据处理的核心概念以及它们之间的关系。然后详细阐述了Flink处理物联网数据的核心算法原理、数学模型和公式。通过实际项目案例,展示了开发环境搭建、代码实现和解读。
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- 经典与量子结合:微算法科技(MLGO)混合经典量子算法优化多查询问题
MicroTech2025
科技量子计算
在当今快速发展的技术领域,量子计算被视为解决复杂问题的下一个前沿。尽管量子计算机的潜力巨大,但它们在实际应用中仍面临诸多挑战,尤其是在错误率和量子比特数量方面。为了克服这些限制,微算法科技(NASDAQ:MLGO)开发了一种创新的混合算法,结合了经典计算和量子计算的优势,以优化多查询问题(MQO)。量子计算是一种利用量子力学原理进行信息处理的技术。与传统的经典计算机相比,量子计算机在处理某些特定类
- 微算法科技(MLGO)基于 Grover 的量子算法在图形游戏中寻找纯纳什均衡的创新突破
MicroTech2025
科技量子计算
随着量子计算的迅猛发展,各行各业正积极探索其潜力,特别是在博弈论领域。在博弈论中,纳什均衡是描述多个参与者在游戏中选择策略时相互影响的一种状态。在很多情况下,找到纯纳什均衡并不容易,尤其是在复杂的图形游戏中。传统算法的计算复杂性常常导致求解时间过长,因此引入量子算法有助于提高效率。Grover搜索算法是一种有效的量子搜索算法,能够在未标记的数据库中以平方根的时间复杂度找到目标元素。它通过振幅放大技
- 量子计算时代的突破:微算法科技开发出多目标进化算法推动量子电路创新
量子计算正处于技术发展的前沿,但其实际应用与潜力的实现仍然面临巨大挑战。量子计算机的基本单位是量子比特(qubit),与经典计算机的比特不同,量子比特可以同时处于多个状态(叠加),并通过纠缠现象相互作用。理论上,量子计算机能够以比经典计算机快得多的速度解决某些问题,特别是在处理涉及大量变量和复杂数据集的问题时。尽管量子硬件的进步令人瞩目,尤其是近期一些公司推出了量子处理器,但量子算法(即量子计算机
- OpenAI模型可解释性工具:理解AI的黑箱
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能百度ai
OpenAI模型可解释性工具:理解AI的黑箱关键词:OpenAI模型、可解释性工具、AI黑箱、模型理解、人工智能摘要:本文旨在深入探讨OpenAI模型可解释性工具,帮助大家理解AI这个“黑箱”。首先介绍了研究的背景、目的和预期读者,接着解释了核心概念,包括OpenAI模型、可解释性工具等,阐述了它们之间的关系。通过核心算法原理、数学模型和公式的讲解,让大家明白其内在机制。还给出了项目实战案例,包括
- 突破量子仿真瓶颈:微算法科技MLGO量子算法的算术化与核操作迭代模型
近年来,量子计算机的迅速发展和潜在的强大计算能力吸引了全球科研机构和企业的广泛关注。量子计算机利用量子力学的特性来处理复杂的计算任务,具有在某些方面远超经典计算机的潜力。然而,真正实用的量子计算机尚未大规模普及,因此在经典平台上模拟量子算法成为当前的研究热点之一。微算法科技(NASDAQ:MLGO)近日开发的一种创新型高精度、高吞吐量的可重构仿真技术,旨在为量子算法的研究和应用提供有效的解决方案。
- 使用python对音频做去噪 处理
莫夭阏之
python信号处理语音识别
要使用Python对音频进行去噪处理,您可以使用许多库和算法。以下是使用librosa和scipy库实现的基本去噪算法:首先,您需要安装所需的库。您可以使用以下命令安装它们:pipinstalllibrosascipynumpy接下来,您需要导入所需的库:importlibrosaimportscipy.signalassignalimportnumpyasnp加载音频文件并提取音频数据:y,sr
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep