作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet
跟opencv相关的:
http://opencv.org/
2012年7月4日随着opencv2.4.2版本的发布,opencv更改了其最新的官方网站地址。
http://www.opencvchina.com/
好像12年才有这个论坛的,比较新。里面有针对《learning opencv》这本书的视频讲解,不过视频教学还没出完,正在更新中。对刚入门学习opencv的人来说很不错。
http://www.opencv.org.cn/forum/
opencv中文论坛,对于初次接触opencv的学者来说比较不错,入门资料多,opencv的各种英文文档也翻译成中文了。不足是感觉这个论坛上发帖提问很少人回答,也就是说讨论不够激烈。
http://code.opencv.org/projects/opencv
opencv版本bug修补,版本更新,以及各种相关大型活动安排,还包含了opencv最近几个月内的活动路线,即未来将增加的功能等,可以掌握各种关于opencv进展情况的最新进展。
http://tech.groups.yahoo.com/group/OpenCV/
opencv雅虎邮件列表,据说是最好的opencv论坛,信息更新最新的地方。不过个人认为要查找相关主题的内容,在邮件列表中非常不方便。
http://www.cmlab.csie.ntu.edu.tw/~jsyeh/wiki/doku.php
台湾大学暑假集训网站,内有链接到与opencv集训相关的网页。感觉这种教育形式还蛮不错的。
http://sourceforge.net/projects/opencvlibrary/
opencv版本发布地方。
http://code.opencv.org/projects/opencv/wiki/ChangeLog#241 http://opencv.willowgarage.com/wiki/OpenCV%20Change%20Logs
opencv版本内容更改日志网页,前面那个网页更新最快。
http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/tutorials.html
opencv中文教程网页,分几个模块讲解,有代码有过程。内容是网友翻译opencv自带的doc文件里的。
https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html
网友总结的常用带有cvpr领域常见算法code链接的网址,感觉非常的不错。
http://opencv.itseez.com/
opencv的函数、类等查找网页,有导航,查起来感觉不错。
其他网友cvpr领域的链接总结:
http://www.cnblogs.com/kshenf/
网友整理常用牛人链接总结,非常多。不过个人没有没有每个网站都去试过。所以本文也是我自己总结自己曾经用过的或体会过的。
cvpr综合网站论坛博客等:
http://www.cvchina.net/
中国计算机视觉论坛
http://www.cvchina.info/
这个博客很不错,每次看完都能让人兴奋,因为有很多关于cv领域的科技新闻,还时不时有视频显示。另外这个博客里面的资源也整理得相当不错。中文的。
http://www.bfcat.com/
一位网友的个人计算机视觉博客,有很多关于计算机视觉前沿的东西介绍,与上面的博客一样,看了也能让人兴奋。
http://blog.csdn.net/v_JULY_v/
牛人博客,主攻数据结构,机器学习数据挖掘算法等。
国内科研团队和牛人网页:
http://vision.ia.ac.cn/zh/index_cn.html
中科院自动化所机器视觉课题小组,有相关数据库、论文、课件等下载。
http://www.cbsr.ia.ac.cn/users/szli/
李子青教授个人主页,中科院自动化所cvpr领域牛叉人!
http://www4.comp.polyu.edu.hk/~cslzhang/
香港理工大学教授lei zhang个人主页,也是cvpr领域一大牛人啊,cvpr,iccv各种发表。更重要的是他所以牛叉论文的code全部公开,非常难得!
http://liama.ia.ac.cn/wiki/start
中法信息、自动化与应用联合实验室,里面很多内容不仅限而cvpr,还有ai领域一些其他的研究。
http://www.cogsci.xmu.edu.cn/cvl/english/
厦门大学特聘教授,cv领域一位牛人。研究方向主要为目标检测,目标跟踪,运动估计,三维重建,鲁棒统计学,光流计算等。
http://idm.pku.edu.cn/index.aspx
北京大学数字视频编码技术国家实验室。
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
libsvm项目网址,台湾大学的,很火!
http://www.jdl.ac.cn/user/sgshan/index.htm
山世光,人脸识别研究比较牛。在中国科学院智能信息处理重点实验室
国外科研团队和牛人网页:
https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html
常见计算机视觉资源整理索引,国外学者整理,全是出名的算法,并且带有代码的,这个非常有帮助,其链接都是相关领域很火的代码。
http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/txtv-groups.html
国外学者整理的各高校研究所团队网站
http://research.microsoft.com/en-us/groups/vision/
微软视觉研究小组,不解释,大家懂的,牛!
http://lear.inrialpes.fr/index.php
法国国家信息与自动化研究所,有对应牛人的链接,论文项目网页链接,且一些code对应链接等。
http://www.cs.ubc.ca/~pcarbo/objrecls/
Learning to recognize objects with little supervision该篇论文的项目网页,有对应的code下载,另附有详细说明。
http://www.eecs.berkeley.edu/~lbourdev/poselets/
poselets相关研究界面,关于poselets的第一手资料。
http://www.cse.oulu.fi/CMV/Research
芬兰奥卢大学计算机科学与工程学院网页,里面有很多cv领域相关的研究,比如说人脸,脸部表情,人体行为识别,跟踪,人机交互等cv基本都涉及有。
http://www.cs.cmu.edu/~cil/vision.html
卡耐基梅隆大学计算机视觉主页,内容非常多。可惜的是该网站内容只更新到了2004年。
http://vision.stanford.edu/index.html
斯坦福大学计算机视觉主页,里面有非常非常多的牛人,比如说大家熟悉的lifeifei.
http://www.wavelet.org/index.php
关于wavelet研究的网页。
http://civs.ucla.edu/
加州大学洛杉矶分校统计学院,关于统计学习方面各种资料,且有相应的网上公开课。
http://www.cs.cmu.edu/~efros/
卡耐基梅隆大学Alexei(Alyosha)Efros教授个人网站,计算机图形学高手。
http://web.mit.edu/torralba/www//
mit牛人Associate教授个人网址,主要研究计算机视觉人体视觉感知,目标识别和场景理解等。
http://people.csail.mit.edu/billf/
mit牛人William T. Freeman教授,主要研究计算机视觉和图像学
http://www.research.ibm.com/peoplevision/
IBM人体视觉研究中心,里面除了有其研究小组的最新成果外,还有很多测试数据(特别是视频)供下载。
http://www.vlfeat.org/
vlfeat主页,vlfeat也是一个开源组织,主要定位在一些最流行的视觉算法开源上,C编写,其很多算法效果比opencv要好,不过数量不全,但是非常有用。
http://www.robots.ox.ac.uk/~az/
Andrew Zisserman的个人主页,这人大家应该熟悉,《计算机视觉中的多视几何》这本神书的作者之一。
http://www.cs.utexas.edu/~grauman/
KristenGrauman教授的个人主页,是个大美女,且是2011年“马尔奖”获得者,”马尔奖“大家都懂的,计算机视觉领域的最高奖项,目前无一个国内学者获得过。她的主要研究方法是视觉识别。
http://groups.csail.mit.edu/vision/welcome/
mit视觉实验室主页。
http://code.google.com/p/sixthsense/
曾经在网络上非常出名一个视频,一个作者研究的第六感装置,现在这个就是其开源的主页。
http://vision.ucsd.edu/~pdollar/research.html#BehaviorRecognitionAnimalBehavior
Piotr Dollar的个人主要,主要研究方向是人体行为识别。
http://www.mmp.rwth-aachen.de/
移动多媒体处理,将移动设备,计算机图像学,视觉,图像处理等结合的领域。
http://www.di.ens.fr/~laptev/index.html
Ivan Laptev牛人主页,主要研究人体行为识别。有很多数据库可以下载。
http://blogs.oregonstate.edu/hess/
Rob Hess的个人主要,里面有源码下载,比如说粒子滤波,他写的粒子滤波在网上很火。
http://morethantechnical.googlecode.com/svn/trunk/
cvpr领域一些小型的开源代码。
http://iica.de/pd/index.py
做行人检测的一个团队,内部有一些行人检测的代码下载。
http://www.cs.utexas.edu/~grauman/research/pubs.html
UT-Austin计算机视觉小组,包含的视觉研究方向比较广,且有的文章有源码,你只需要填一个邮箱地址,系统会自动发跟源码相关的信息过来。
书籍相关网页:
http://www.imageprocessingplace.com/index.htm
冈萨雷斯的《数字图像处理》一书网站,包含课程材料,matlab图像处理工具包,课件ppt等相关素材。
期刊会议论文下载:
http://cvpapers.com/
几个顶级会议论文公开下载界面,比如说ICCV,CVPR,ECCV,ACCV,ICPR,SIGGRAPH等。
http://www.cvpr2012.org/
cvpr2012的官方地址,里面有各种资料和信息,其他年份的地址类似推理更改即可。
http://www.sciencedirect.com/science/journal/02628856
ICV期刊下载
会议期刊相关信息:
http://conferences.visionbib.com/Iris-Conferences.html
该网页列出了图像处理,计算机视觉领域相关几乎所有比较出名的会议时间表。
cvpr相关数据库下载:
http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm
微软研究院牛人Wallflower Paper的论文中用到的目标检测等测试图片
http://archive.ics.uci.edu/ml/
UCI数据库列表下载,最常用的机器学习数据库列表。
http://www.cs.rochester.edu/~rmessing/uradl/
人体行为识别通过关键点的跟踪视频数据库,Rochester university的
http://www.research.ibm.com/peoplevision/performanceevaluation.html
IBM人体视觉研究中心,有视频监控等非常多的测试视频。
AI相关娱乐网页:
http://en.akinator.com/
该网站很好玩,可以测试你心里想出的一个人名(当然前提是这个人必须有一定的知名度),然后该网站会提出一系列的问题,你可以选择yes or no,or I don’t know等等,最后系统会显示你心中所想的那个人。
http://www.doggelganger.co.nz/
人与狗的匹配游戏,摄像头采集人脸,呵呵…
工具和code下载:
http://lear.inrialpes.fr/people/dorko/downloads.html
6种常见的图像特征点检测子,linux下环境运行。不过只提供了二进制文件,不提供源码。
http://www.cs.ubc.ca/~pcarbo/objrecls/index.html#code
ssmcmc的matlab代码,是Learning to recognize objects with little supervision这一系列文章用的源码,属于目标识别方面的研究。
http://www.robots.ox.ac.uk/~timork/
仿射无关尺度特征点检测算子源码,还有些其它算子的源码或二进制文件。
http://www.vision.ee.ethz.ch/~bleibe/code/ism.html
隐式形状模型(ISM)项目主页,作者Bastian Leibe提供了linux下运行的二进制文件。
http://www.di.ens.fr/~laptev/download.html#stip
Ivan Laptev牛人主页中的STIP特征点检测code,但是也只是有二进制文件,无源码。该特征点在行为识别中该特征点非常有名。
http://ai.stanford.edu/~quocle/
斯坦福大学Quoc V.Le主页,上有它2011年行为识别文章的代码。