Flume+Kafka+Storm实战:一、Kakfa与Storm整合

文章目录

  • 0x00 文章内容
  • 0x01 Kafka准备
          • 1. 启动Kafka
          • 2. 创建Topic
          • 3. 启动消费者与消费者
  • 0x02 Storm准备
          • 1. 构建Maven项目
          • 2. 编写代码
  • 0x03 校验结果
          • 1. 打包Storm代码
          • 2. 执行ZK与Storm
          • 3. 执行Storm作业
          • 4. 校验过程
  • 0xFF 总结

0x00 文章内容

  1. Kafka准备
  2. Storm准备
  3. 校验结果

0x01 Kafka准备

1. 启动Kafka

a. 后台启动Kafka(三台都要启动)

nohup ~/bigdata/kafka_2.11-1.0.0/bin/kafka-server-start.sh ~/bigdata/kafka_2.11-1.0.0/config/server.properties >~/bigdata/kafka_2.11-1.0.0/logs/server.log 2>&1 &
2. 创建Topic

a. 创建Topic:word-count-input

~/bigdata/kafka_2.11-1.0.0/bin/kafka-topics.sh --create --zookeeper master:2181 --replication-factor 1 --partitions 1 --topic word-count-input

b. 创建Topic:word-count-output

~/bigdata/kafka_2.11-1.0.0/bin/kafka-topics.sh --create --zookeeper master:2181 --replication-factor 1 --partitions 1 --topic word-count-output
3. 启动消费者与消费者

a. 启动一个producer,向word-count-input发送消息

进入到$KAFKA_HOME路径:
cd ~/bigdata/kafka_2.11-1.0.0

启动:

bin/kafka-console-producer.sh --broker-list master:9092 --topic word-count-input

在这里插入图片描述
b. 启动一个consumer,消费word-count-output的消息

bin/kafka-console-consumer.sh --bootstrap-server master:9092 --topic word-count-output --property print.key=true

在这里插入图片描述

0x02 Storm准备

1. 构建Maven项目

a. 引入Storm依赖

<dependency>
    <groupId>org.apache.stormgroupId>
    <artifactId>storm-coreartifactId>
    <version>1.2.2version>
    <scope>providedscope>
dependency>

b. 引入Kafka依赖

<dependency>
    <groupId>org.apache.stormgroupId>
    <artifactId>storm-kafka-clientartifactId>
    <version>1.2.2version>
dependency>

c. 引入额外打包插件

<plugin>
    <groupId>org.apache.maven.pluginsgroupId>
    <artifactId>maven-compiler-pluginartifactId>
    <version>3.1version>
    <configuration>
        <source>1.8source>
        <target>1.8target>
        <testExcludes>
            <testExclude>/src/test/**testExclude>
        testExcludes>
        <encoding>utf-8encoding>
    configuration>
plugin>

<plugin>
    <artifactId>maven-assembly-pluginartifactId>
    <configuration>
        <descriptorRefs>
            <descriptorRef>jar-with-dependenciesdescriptorRef>
        descriptorRefs>
    configuration>
    <executions>
        <execution>
            <id>make-assemblyid> 
            <phase>packagephase> 
            <goals>
                <goal>singlegoal>
            goals>
        execution>
    executions>
plugin>

d. 完整的pom.xml文件


<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>com.shaonaiyigroupId>
    <artifactId>stormlearningartifactId>
    <version>1.0-SNAPSHOTversion>

    <dependencies>
        
        <dependency>
            <groupId>org.apache.stormgroupId>
            <artifactId>storm-coreartifactId>
            <version>1.2.2version>
            <scope>providedscope>
        dependency>
        <dependency>
            <groupId>org.apache.stormgroupId>
            <artifactId>storm-kafka-clientartifactId>
            <version>1.2.2version>
        dependency>
    dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-compiler-pluginartifactId>
                <version>3.1version>
                <configuration>
                    <source>1.8source>
                    <target>1.8target>
                    <testExcludes>
                        <testExclude>/src/test/**testExclude>
                    testExcludes>
                    <encoding>utf-8encoding>
                configuration>
            plugin>

            <plugin>
                <artifactId>maven-assembly-pluginartifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependenciesdescriptorRef>
                    descriptorRefs>
                configuration>
                <executions>
                    <execution>
                        <id>make-assemblyid> 
                        <phase>packagephase> 
                        <goals>
                            <goal>singlegoal>
                        goals>
                    execution>
                executions>
            plugin>
        plugins>
    build>

project>
2. 编写代码

a. 项目代码结构
Flume+Kafka+Storm实战:一、Kakfa与Storm整合_第1张图片
b. KafkaSpoutBuilder

package com.shaonaiyi.kafka;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.storm.kafka.spout.KafkaSpout;
import org.apache.storm.kafka.spout.KafkaSpoutConfig;

import java.util.List;

/**
 * @author: shaonaiyi
 * @createTime: 2019/07/14 13:32
 * @description: KafkaSpout构建器
 */

public class KafkaSpoutBuilder {

    private List<String> brokers;
    private String topic;

    public KafkaSpoutBuilder brokers(List<String> v) {
        brokers = v;
        return this;
    }

    public KafkaSpoutBuilder topic(String v) {
        topic = v;
        return this;
    }


    public KafkaSpout build() {
        /** 配置kafka
         * 1. 需要设置consumer group(注意一个partition中的消息只能被同一group中的一个consumer消费)
         * 2. 起始消费策略:根据业务需要配置
         */
        String allBrokers = String.join(",", brokers);
        KafkaSpoutConfig<String, String> conf = KafkaSpoutConfig
                .builder(allBrokers, topic)
                .setProp(ConsumerConfig.GROUP_ID_CONFIG, "word-count-storm")
                //消费最新的数据
                .setFirstPollOffsetStrategy(KafkaSpoutConfig.FirstPollOffsetStrategy.LATEST)
                .build();
        return new KafkaSpout(conf);
    }

}

c. KafkaSplitSentenceBolt

package com.shaonaiyi.kafka;

/**
 * @author: shaonaiyi
 * @createTime: 2019/07/14 13:38
 * @description: 语句分割bolt
 */

import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;

import java.util.Map;

/**
 * 如,接收的Tuple是:Tuple("sentence" -> "I love teacher shao")
 * 则,输出的Tuple为:
 *      Tuple("word" -> "I")
 *      Tuple("word" -> "love")
 *      Tuple("word" -> "teacher")
 *      Tuple("word" -> "shao")
 */
public class KafkaSplitSentenceBolt extends BaseRichBolt {

    private OutputCollector collector;

    @Override
    public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) {
        this.collector = outputCollector;
    }

    @Override
    public void execute(Tuple tuple) { // 实时接收SentenceSpout中输出的Tuple流
        String sentence = tuple.getStringByField("value"); // 根据key获取Tuple中的语句,"value"是Kafka中固定了的
        String[] words = sentence.split(" "); // 将语句按照空格进行切割
        for (String word: words) {
            this.collector.emit(new Values(word)); // 将切割之后的每一个单词作为Tuple的value输出到下一个bolt中
        }
        this.collector.ack(tuple); // 表示成功处理kafka-spout输出的消息,需要应答,要不然,kafka-spout会不断的重复发送消息
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
        outputFieldsDeclarer.declare(new Fields("word")); // 输出Tuple的key
    }

}

d. KafkaWordCountBolt

package com.shaonaiyi.kafka;

import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;

import java.util.HashMap;
import java.util.Map;

/**
 * @author: shaonaiyi
 * @createTime: 2019/07/14 13:42
 * @description: 单词计数bolt
 */

public class KafkaWordCountBolt extends BaseRichBolt {

    private OutputCollector collector;
    private HashMap<String, Long> counts = null; // 用于统计每隔单词的计数

    @Override
    public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) {
        this.collector = outputCollector;
        this.counts = new HashMap<String, Long>();
    }

    @Override
    public void execute(Tuple tuple) { // 实时接收SplitSentenceBolt中输出的Tuple流
        String word = tuple.getStringByField("word"); // 根据key获取Tuple中的单词
        // 统计每一个单词总共出现的次数
        Long count = counts.getOrDefault(word, 0L);
        count++;
        this.counts.put(word, count);

        // 将每一个单词以及这个单词出现的次数作为Tuple中的value输出到下一个bolt中
        this.collector.emit(new Values(word, count.toString()));
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
        // 输出Tuple的key,有两个key,是因为每次输出的value也有两个
        outputFieldsDeclarer.declare(new Fields("key", "message"));
    }

}

e. WordCountKafkaTopology

package com.shaonaiyi.kafka;

import org.apache.storm.Config;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.kafka.bolt.KafkaBolt;
import org.apache.storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper;
import org.apache.storm.kafka.bolt.selector.DefaultTopicSelector;
import org.apache.storm.kafka.spout.KafkaSpout;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;

import java.util.Arrays;
import java.util.Properties;

/**
 * @author: shaonaiyi
 * @createTime: 2019/07/15 22:54
 * @description: Kafka之WordCountTopology
 */

public class WordCountKafkaTopology {

    private static final String SENTENCE_SPOUT_ID = "sentence-spout";
    private static final String SPLIT_BOLT_ID = "split-bolt";
    private static final String COUNT_BOLT_ID = "count-bolt";
    private static final String KAFKA_BOLT_ID = "kafka-bolt";
    private static final String TOPOLOGY_NAME = "word-count-topology";

    public static void main(String[] args) throws InvalidTopologyException, AuthorizationException, AlreadyAliveException {

        int workers = Integer.parseInt(args[0]);

        // 从Kafka中消费数据
        KafkaSpout kafkaSpout = new KafkaSpoutBuilder()
                .brokers(Arrays.asList("master:9092"))
                .topic("word-count-input")
                .build();

        KafkaSplitSentenceBolt splitSentenceBolt = new KafkaSplitSentenceBolt();
        KafkaWordCountBolt wordCountBolt = new KafkaWordCountBolt();

        Properties props = new Properties();
        props.put("bootstrap.servers", "master:9092");
        // 此配置是表明当一次produce请求被认为完成时的确认值。
        // 特别是,多少个其他brokers必须已经提交了数据到他们的log并且向他们的leader确认了这些信息。典型的值包括:
        // 0: 表示producer从来不等待来自broker的确认信息(和0.7一样的行为)。
        // 这个选择提供了最小的时延但同时风险最大(因为当server宕机时,数据将会丢失)。
        // 1:表示获得leader replica已经接收了数据的确认信息。这个选择时延较小同时确保了server确认接收成功。
        // -1:producer会获得所有同步replicas都收到数据的确认
        props.put("acks", "1");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        KafkaBolt kafkaBolt = new KafkaBolt()
                .withProducerProperties(props)
                .withTopicSelector(new DefaultTopicSelector("word-count-output"))
                .withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());

        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout(SENTENCE_SPOUT_ID, kafkaSpout);
        builder.setBolt(SPLIT_BOLT_ID, splitSentenceBolt).shuffleGrouping(SENTENCE_SPOUT_ID);
        builder.setBolt(COUNT_BOLT_ID, wordCountBolt).fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));
        builder.setBolt(KAFKA_BOLT_ID, kafkaBolt).shuffleGrouping(COUNT_BOLT_ID);

        // 3、提交Topology
        Config config = new Config(); // 用来配置Topology运行时行为,对Topology所有组件全局生效的配置参数集合
        config.setNumWorkers(workers);
        StormSubmitter.submitTopology(TOPOLOGY_NAME, config, builder.createTopology()); // 提交Topology

    }

}

0x03 校验结果

1. 打包Storm代码

a. 打包
Flume+Kafka+Storm实战:一、Kakfa与Storm整合_第2张图片
b. 上传到集群
在这里插入图片描述

2. 执行ZK与Storm

此步骤与教程:实时流处理框架之Storm的安装与部署
=>
0x03 启动并校验Storm 步骤一样

即:
a. 启动集群上的三台Zookeeper(查看进程是否存在,如果Kafka已经启动,应该还有Kafka的进程)
Flume+Kafka+Storm实战:一、Kakfa与Storm整合_第3张图片
b. 启动Storm
在master上启动Nimbus和Web UI
cd ~/bigdata/apache-storm-1.2.2
nohup bin/storm nimbus 2>&1 &
然后回车,切换终端2,执行:
nohup bin/storm ui 2>&1 &
然后回车
在slave1和slave2上启动Supervisor
cd ~/bigdata/apache-storm-1.2.2
nohup bin/storm supervisor 2>&1 &

3. 执行Storm作业

a. 执行Storm作业

~/bigdata/apache-storm-1.2.2/bin/storm jar /home/hadoop-sny/jar/stormlearning-1.0-SNAPSHOT-jar-with-dependencies.jar com.shaonaiyi.kafka.WordCountKafkaTopology 1

在这里插入图片描述
b. 查看Web UI界面(master:8080
Flume+Kafka+Storm实战:一、Kakfa与Storm整合_第4张图片

4. 校验过程

a. 目前各节点的进程情况
Flume+Kafka+Storm实战:一、Kakfa与Storm整合_第5张图片
b. 发送消息到Kafka
在这里插入图片描述
c. 查看消费者信息
Flume+Kafka+Storm实战:一、Kakfa与Storm整合_第6张图片
d. 查看Storm的Web UI界面
Flume+Kafka+Storm实战:一、Kakfa与Storm整合_第7张图片

0xFF 总结

  1. 在生产者端多发送几个语句,你会发现这种统计的结果,并不是我们真正想要的结果,思考应该怎样才能想我们前面学习WordCount那种表现形式,请看后面的教程。
  2. 内容比较多,请大家认真操作。

作者简介:邵奈一
全栈工程师、市场洞察者、专栏编辑
| 公众号 | 微信 | 微博 | CSDN | 简书 |

福利:
邵奈一的技术博客导航
邵奈一 原创不易,如转载请标明出处。


你可能感兴趣的:(大数据项目实战,大数据,kafka)