(1)进程标识符(内部,外部)
(2)处理机的信息(通用寄存器,指令计数器,PSW,用户的栈指针)。
(3)进程调度信息(进程状态,进程的优先级,进程调度所需的其它信息,事件)
(4)进程控制信息(程序的数据的地址,资源清单,进程同步和通信机制,链接指针)
数据结构中定义的内容是为后面的管理提供支持的,所以不同的操作系统根据自己的特点又对PCB的内容做了一些调整。下面整理了比较流行的一些操作系统的PCB结构,供参考。
1.Linux的进程块
Linux的进程控制块为一个由结构task_struct所定义的数据结构,task_struct存
/include/ linux/sched.h 中,其中包括管理进程所需的各种信息。Linux系统的所有进程控制块组织成结构数组形式。早期的Linux版本是多可同时运行进程的个数由NR_TASK(缺省值为512)规定,NR_TASK即为PCB结果数组的长度。近期版本中的PCB组成一个环形结构,系统中实际存在的进程数由其定义的全局变量nr_task来动态记录。结构数组:struct task_struct *task[NR_TASK]={&init_task}来记录指向各PCB的指针,该指针数组定义于/kernel/sched.c中。
在创建一个新进程时,系统在内存中申请一个空的task_struct区,即空闲PCB块,并填入所需信息。同时将指向该结构的指针填入到task[]数组中。当前处于运行状态进程的PCB用指针数组current_set[]来指出。这是因为Linux支持多处理机系统,系统内可能存在多个同时运行的进程,故current_set定义成指针数组。
Linux系统的PCB包括很多参数,每个PCB约占1KB多的内存空间。用于表示PCB的结构task_struct简要描述如下:
struct task_struct{
...
unsigned short uid;
int pid;
int processor;
...
volatile long state;
long prority;
unsighed long rt_prority;
long counter;
unsigned long flags;
unsigned long policy;
...
Struct task_struct *next_task, *prev_task;
Struct task_struct *next_run,*prev_run;
Struct task_struct *p_opptr,*p_pptr,*p_cptr,*pysptr,*p_ptr;
...
};
下面对部分数据成员进行说明:
(1)unsigned short pid 为用户标识
(2)int pid 为进程标识
(3)int processor标识用户正在使用的CPU,以支持对称多处理机方式;
(4)volatile long state 标识进程的状态,可为下列六种状态之一:
可运行状态(TASK-RUNING);
可中断阻塞状态(TASK-UBERRUPTIBLE)
不可中断阻塞状态(TASK-UNINTERRUPTIBLE)
僵死状态(TASK-ZOMBLE)
暂停态(TASK_STOPPED)
交换态(TASK_SWAPPING)
(5)long prority表示进程的优先级
(6)unsigned long rt_prority 表示实时进程的优先级,对于普通进程无效
(7)long counter 为进程动态优先级计数器,用于进程轮转调度算法
(8)unsigned long policy 表示进程调度策略,其值为下列三种情况之一:
SCHED_OTHER(值为0)对应普通进程优先级轮转法(round robin)
SCHED_FIFO(值为1)对应实时进程先来先服务算法;
SCHED_RR(值为2)对应实时进程优先级轮转法
(9)struct task_struct *next_task,*prev_task为进程PCB双向链表的前后项指针
(10)struct task_struct *next_run,*prev_run为就绪队列双向链表的前后项指针
(11)struct task_struct *p_opptr,*p_pptr,*p_cptr,*p_ysptr,*p_ptr指明进程家族间的关系,分别为指向祖父进程、父进程、子进程以及新老进程的指针。
2.Unix的进程块(教科书10.2节有详细介绍)
在 UNIX 系统Ⅴ中, 把进程控制块分为四部分: |
|
进程表项
进程标识符(PID) 用户标识符(UID) 进程状态 事件描述符 进程和U区在内存或外存的地址 软中断信息 计时域 进程的大小 偏置值nice P-Link指针 指向U区进程正文、数据及栈在内存区域的指针 |
|
U 区 进程表项指针 真正用户标识符u-ruid(real user ID) 有效用户标识符u-euid(effective user ID) 用户文件描述符表 当前目录和当前根 计时器 内部I/O参数 限制字段 差错字段 返回值 信号处理数组 |
|
进程区表 区的类型和大小 区的状态 区在物理存储器中的位置 引用计数 指向文件索引结点的指针 |
|
系统区表 | |
进程区表项、系统区表项和区的关系 | |
|
|
进程的数据结构 | |
|
|
进程状态与进程映像 |
|
进程状态 | |
|
3.windows下的PCB
按照MS的定义, Windows中的进程简单地说就是一个内存中的可执行程序, 提供程序运行的各种资源. 进程拥有虚拟的地址空间, 可执行代码, 数据, 对象句柄集, 环境变量, 基础优先级, 以及最大最小工作集.
Windows中的线程是系统处理机调度的基本单位. 线程可以执行进程中的任意代码, 包括正在被其他线程执行的代码. 进程中的所有线程共享进程的虚拟地址空间和系统资源. 每个线程拥有自己的例外处理过程, 一个调度优先级以及线程上下文数据结构. 线程上下文数据结构包含寄存器值, 核心堆栈, 用户堆栈和线程环境块.
Windows中的进程控制块是EPROCESS结构, 线程控制块是ETHREAD结构. EPROCESS/ETHREAD的定义在inside windows2000中有比较详细的描述。
Windows的进程链表是一个双向环链表。这个环链表LIST_ENTRY结构把每个EPROCESS链接起来. 那么只要找到一个EPROCESS结构, 我们就可以遍历整个链表, 这就是枚举进程的原理。
建议:同学看看<