Elasticsearch - 短语匹配(match_phrase)以及slop参数

因为elasticsearch 里默认的IK分词器是会将每一个中文都进行了分词的切割,所以你直接想查一整个词,或者一整句话是无返回结果的

设置了not_analyzed后,搜索的时候就不行了(因为没有进行分词,所以理解为精确查找)

如果没有设置"index":"not_analyzed" ,也可以采用下面的查询方式

 

 

短语匹配(Phrase Matching)

 

 

就像用于全文搜索的的match查询一样,当你希望寻找邻近的单词时,match_phrase查询可以帮你达到目的。

GET /my_index/my_type/_search
{
    "query": {
        "match_phrase": {
            "title": "quick brown fox"
        }
    }
}

和match查询类似,match_phrase查询首先解析查询字符串来产生一个词条列表。然后会搜索所有的词条,但只保留包含了所有搜索词条的文档,并且词条的位置要邻接。一个针对短语quick fox的查询不会匹配我们的任何文档,因为没有文档含有邻接在一起的quick和fox词条。

match_phrase查询也可以写成类型为phrase的match查询:

"match": {
    "title": {
        "query": "quick brown fox",
        "type":  "phrase"
    }
}

 

词条位置

当一个字符串被分析时,分析器不仅只返回一个词条列表,它同时也返回原始字符串的每个词条的位置、或者顺序信息:

GET /_analyze?analyzer=standard
Quick brown fox

返回如下:

{
   "tokens": [
      {
         "token": "quick",
         "start_offset": 0,
         "end_offset": 5,
         "type": "",
         "position": 1 
      },
      {
         "token": "brown",
         "start_offset": 6,
         "end_offset": 11,
         "type": "",
         "position": 2 
      },
      {
         "token": "fox",
         "start_offset": 12,
         "end_offset": 15,
         "type": "",
         "position": 3 
      }
   ]
}

 

表示原始字符串各个词条的位置.

位置信息可以被保存在倒排索引(Inverted Index)中,像match_phrase这样位置感知(Position-aware)的查询能够使用位置信息来匹配那些含有正确单词出现顺序的文档,且在这些单词之间没有插入别的单词。

短语是什么

 

对于匹配了短语"quick brown fox"的文档,下面的条件必须为true:

  • quick、brown和fox必须全部出现在某个字段中。
  • brown的位置必须比quick的位置大1。
  • fox的位置必须比quick的位置大2。

如果以上的任何一个条件没有被满足,那么文档就不能被匹配。

在内部,match_phrase查询使用了低级的span查询族(Query Family)来执行位置感知的查询。span查询是词条级别的查询,因此它们没有解析阶段(Analysis Phase);它们直接搜索精确的词条。

 

幸运的是,大多数用户几乎不需要直接使用span查询,因为match_phrase查询通常已经够好了。但是,对于某些特别的字段,比如专利搜索(Patent Search),会使用这些低级查询来执行拥有非常特别构造的位置搜索。

以上参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/phrase-matching.html#phrase-matching

混合起来(Mixing it up)

 

精确短语(Exact-phrase)匹配也许太过于严格了。也许我们希望含有"quick brown fox"的文档也能够匹配"quick fox"查询,即使位置并不是完全相等的。

我们可以在短语匹配使用slop参数来引入一些灵活性:

GET /my_index/my_type/_search
{
    "query": {
        "match_phrase": {
            "title": {
                "query": "quick fox",
                "slop":  1
            }
        }
    }
}

slop参数告诉match_phrase查询词条能够相隔多远时仍然将文档视为匹配。相隔多远的意思是,你需要移动一个词条多少次来让查询和文档匹配?

我们以一个简单的例子来阐述这个概念。为了让查询quick fox能够匹配含有quick brown fox的文档,我们需要slop的值为1:

 
  1. Pos 1 Pos 2 Pos 3

  2. -----------------------------------------------

  3. Doc: quick brown fox

  4. -----------------------------------------------

  5. Query: quick fox

  6. Slop 1: quick ↳ fox

  7.  

尽管在使用了slop的短语匹配中,所有的单词都需要出现,但是单词的出现顺序可以不同。如果slop的值足够大,那么单词的顺序可以是任意的。

为了让fox quick查询能够匹配我们的文档,需要slop的值为3:

 
  1. Pos 1 Pos 2 Pos 3

  2. -----------------------------------------------

  3. Doc: quick brown fox

  4. -----------------------------------------------

  5. Query: fox quick

  6. Slop 1: fox|quick ↵

  7. Slop 2: quick ↳ fox

  8. Slop 3: quick ↳ fox

 

以上参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/slop.html

 

 

elasticsearch 查询(match和term)

es中的查询请求有两种方式,一种是简易版的查询,另外一种是使用JSON完整的请求体,叫做结构化查询(DSL)。
由于DSL查询更为直观也更为简易,所以大都使用这种方式。
DSL查询是POST过去一个json,由于post的请求是json格式的,所以存在很多灵活性,也有很多形式。
这里有一个地方注意的是官方文档里面给的例子的json结构只是一部分,并不是可以直接黏贴复制进去使用的。一般要在外面加个query为key的机构。

match

最简单的一个match例子:

查询和"我的宝马多少马力"这个查询语句匹配的文档。

{
  "query": {
    "match": {
        "content" : {
            "query" : "我的宝马多少马力"
        }
    }
  }
}

上面的查询匹配就会进行分词,比如"宝马多少马力"会被分词为"宝马 多少 马力", 所有有关"宝马 多少 马力", 那么所有包含这三个词中的一个或多个的文档就会被搜索出来。
并且根据lucene的评分机制(TF/IDF)来进行评分。

match_phrase

比如上面一个例子,一个文档"我的保时捷马力不错"也会被搜索出来,那么想要精确匹配所有同时包含"宝马 多少 马力"的文档怎么做?就要使用 match_phrase 了

{
  "query": {
    "match_phrase": {
        "content" : {
            "query" : "我的宝马多少马力"
        }
    }
  }
}

完全匹配可能比较严,我们会希望有个可调节因子,少匹配一个也满足,那就需要使用到slop。

{
  "query": {
    "match_phrase": {
        "content" : {
            "query" : "我的宝马多少马力",
            "slop" : 1
        }
    }
  }
}

multi_match

如果我们希望两个字段进行匹配,其中一个字段有这个文档就满足的话,使用multi_match

{
  "query": {
    "multi_match": {
        "query" : "我的宝马多少马力",
        "fields" : ["title", "content"]
    }
  }
}

但是multi_match就涉及到匹配评分的问题了。

我们希望完全匹配的文档占的评分比较高,则需要使用best_fields

{
  "query": {
    "multi_match": {
      "query": "我的宝马发动机多少",
      "type": "best_fields",
      "fields": [
        "tag",
        "content"
      ],
      "tie_breaker": 0.3
    }
  }
}

意思就是完全匹配"宝马 发动机"的文档评分会比较靠前,如果只匹配宝马的文档评分乘以0.3的系数

我们希望越多字段匹配的文档评分越高,就要使用most_fields

{
  "query": {
    "multi_match": {
      "query": "我的宝马发动机多少",
      "type": "most_fields",
      "fields": [
        "tag",
        "content"
      ]
    }
  }
}

我们会希望这个词条的分词词汇是分配到不同字段中的,那么就使用cross_fields

{
  "query": {
    "multi_match": {
      "query": "我的宝马发动机多少",
      "type": "cross_fields",
      "fields": [
        "tag",
        "content"
      ]
    }
  }
}

term

term是代表完全匹配,即不进行分词器分析,文档中必须包含整个搜索的词汇

{
  "query": {
    "term": {
      "content": "汽车保养"
    }
  }
}

查出的所有文档都包含"汽车保养"这个词组的词汇。

使用term要确定的是这个字段是否“被分析”(analyzed),默认的字符串是被分析的。

拿官网上的例子举例:

mapping是这样的:

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "full_text": {
          "type":  "string"
        },
        "exact_value": {
          "type":  "string",
          "index": "not_analyzed"
        }
      }
    }
  }
}

PUT my_index/my_type/1
{
  "full_text":   "Quick Foxes!",
  "exact_value": "Quick Foxes!"  
}

其中的full_text是被分析过的,所以full_text的索引中存的就是[quick, foxes],而extra_value中存的是[Quick Foxes!]。

那下面的几个请求:

GET my_index/my_type/_search
{
  "query": {
    "term": {
      "exact_value": "Quick Foxes!"
    }
  }
}

请求的出数据,因为完全匹配

GET my_index/my_type/_search
{
  "query": {
    "term": {
      "full_text": "Quick Foxes!"
    }
  }
}

请求不出数据的,因为full_text分词后的结果中没有[Quick Foxes!]这个分词。

bool联合查询: must,should,must_not

如果我们想要请求"content中带宝马,但是tag中不带宝马"这样类似的需求,就需要用到bool联合查询。
联合查询就会使用到must,should,must_not三种关键词。

这三个可以这么理解

  • must: 文档必须完全匹配条件
  • should: should下面会带一个以上的条件,至少满足一个条件,这个文档就符合should
  • must_not: 文档必须不匹配条件

比如上面那个需求:

{
  "query": {
    "bool": {
      "must": {
        "term": {
          "content": "宝马"
        }
      },
      "must_not": {
        "term": {
          "tags": "宝马"
        }
      }
    }
  }
}

你可能感兴趣的:(Elasticsearch)