特征选择——卡方检验(使用Python sklearn进行实现)

在看这篇文章之前,如果对卡方检验不熟悉,可以先参考:卡方检验

Python有包可以直接实现特征选择,也就是看自变量对因变量的相关性。今天我们先开看一下如何用卡方检验实现特征选择。

1. 首先import包和实验数据:

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.datasets import load_iris

#导入IRIS数据集
iris = load_iris()
iris.data#查看数据
结果输出:

array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2],
       [ 4.6,  3.1,  1.5,  0.2],
       [ 5. ,  3.6,  1.4,  0.2],
       [ 5.4,  3.9,  1.7,  0.4],
       [ 4.6,  3.4,  1.4,  0.3],


2. 使用卡方检验来选择特征

model1 = SelectKBest(chi2, k=2)#选择k个最佳特征
model1.fit_transform(iris.data, iris.target)#iris.data是特征数据,iris.target是标签数据,该函数可以选择出k个特征 
结果输出为:

array([[ 1.4,  0.2],
       [ 1.4,  0.2],
       [ 1.3,  0.2],
       [ 1.5,  0.2],
       [ 1.4,  0.2],
       [ 1.7,  0.4],
       [ 1.4,  0.3],

可以看出后使用卡方检验,选择出了后两个特征。如果我们还想查看卡方检验的p值和得分,可以使用第3步。

3. 查看p-values和scores

model1.scores_  #得分

得分输出为:

array([ 10.81782088, 3.59449902, 116.16984746, 67.24482759])

可以看出后两个特征得分最高,与我们第二步的结果一致;

model1.pvalues_  #p-values

p值输出为:

array([ 4.47651499e-03, 1.65754167e-01, 5.94344354e-26, 2.50017968e-15])

可以看出后两个特征的p值最小,置信度也最高,与前面的结果一致。



也可以参考官方的帮助文档:selectKbest帮助文档













你可能感兴趣的:(Python,特征选择)