Python编程-使用爬虫程序爬取肺炎疫情数据-2 爬取给定国家的历史疫情信息

文字懒得写了,下面是代码

import json
import easygui
import xlwt
import requests
import datetime

def getDateList():
    # 创建从2020-1-20到目前位置的日期序列
    start_date = datetime.datetime(2020, 1, 20)
    end_date = datetime.datetime.now()
    date_list_all = []
    for i in range((end_date.date() - start_date.date()).days + 1):
        date_list_all.append(start_date + datetime.timedelta(days=i))
    return date_list_all, start_date

def getChinaDataAndSave(workbook, china_day_list, daily_new_add_history, date_list_all, start_date, sheet_name = "中国"):
    print("开始爬取 %s 的疫情数据... ... " % sheet_name)
    # 创建一个worksheet
    worksheet = workbook.add_sheet(sheet_name)
    # 将列标题写入excel
    current_row_index = 0  # 记录当前所写入数据的行号
    for i, str_col in enumerate(['date', 'confirm', 'suspect', 'dead', 'heal', 'nowConfirm', 'nowSevere', "importedCase", 'deadRate', 'healRate', "全国新增", '湖北新增', "全国(除湖北)新增"]):
        worksheet.write(current_row_index, i, str_col)  # 参数对应 行, 列, 值
        worksheet.col(i).width = 150 * 20  # 设置excel中第A列的宽度(方便日期数据展示)
    current_row_index += 1

    # 往excel中写入日期
    style = xlwt.XFStyle()
    style.num_format_str = 'YYYY/MM/DD'
    first_data_date = datetime.datetime.strptime('2020.' + daily_new_add_history[0]['date'], "%Y.%m.%d")  # 爬取到疫情数据的最早日期
    delta_time = (first_data_date - start_date).days
    # 2020-1-20 到 first_data_date(不含后者) 之间未爬取到疫情数据,下面将这些时间数据写入excel
    for i in range(delta_time):
        worksheet.write(current_row_index, 0, date_list_all[current_row_index - 1], style)
        current_row_index += 1

    # china_day_list 和 daily_new_add_history中的数据开始日期不一致,通过断点调试可知china_day_list是从2020.1.13开始的, daily_new_add_history是从2020.1.20开始的
    china_day_list =  [i for i in china_day_list if (datetime.datetime.strptime('2020.' + i['date'], "%Y.%m.%d") - start_date).days >= 0]

    # 提取海外数据信息,并写入excel
    for china_day_i, daily_new_add_history_i in zip(china_day_list, daily_new_add_history):
        worksheet.write(current_row_index, 0, datetime.datetime.strptime('2020.' + china_day_i["date"], "%Y.%m.%d"), style)
        worksheet.write(current_row_index, 1, china_day_i['confirm'])
        worksheet.write(current_row_index, 2, china_day_i['suspect'])
        worksheet.write(current_row_index, 3, china_day_i['dead'])
        worksheet.write(current_row_index, 4, china_day_i['heal'])
        worksheet.write(current_row_index, 5, china_day_i['nowConfirm'])
        worksheet.write(current_row_index, 6, china_day_i['nowSevere'])
        worksheet.write(current_row_index, 7, china_day_i['importedCase'])
        worksheet.write(current_row_index, 8, china_day_i['deadRate'])
        worksheet.write(current_row_index, 9, china_day_i['healRate'])
        worksheet.write(current_row_index, 10, daily_new_add_history_i['country'])
        worksheet.write(current_row_index, 11, daily_new_add_history_i['hubei'])
        worksheet.write(current_row_index, 12, daily_new_add_history_i['notHubei'])
        current_row_index += 1
    print("%s 的疫情数据爬取完毕" % sheet_name)

def getURLContentGet(url):
    headers = {
        'user-agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Mobile Safari/537.36'
    }
    response = requests.get(url, headers=headers)
    return response.status_code, response

def getForeignCountryList(foreign_all_data_info):
    '''
    :param foreign_all_data_info: dict对象,foreign_all_data_info['foreignList']是一个list对象,每一个对象是一个国家的疫情信息
    :return:
    '''
    foreignCountryList = []
    foreignList = foreign_all_data_info['foreignList']
    for country in foreignList:
        foreignCountryList.append(country['name'])
    return foreignCountryList

def getCountryEpidemiSituationInfo(workbook, country_list):
    date_list_all, start_date = getDateList()
    for index, country_i in enumerate(country_list):
        print("开始爬取 %s 的疫情数据... ... " % country_i)
        url = 'https://api.inews.qq.com/newsqa/v1/query/pubished/daily/list?country=%s' % country_i
        status_code, data = getURLContentGet(url)
        if status_code != 200:
            print("%s数据爬取失败,状态码%d" % (country_i, status_code))
            sys.exit()
        data = data.json()["data"]
        if data == None:
            print("\n\n%s数据爬取数据为空\n\n" % country_i)
            break

        # 创建一个worksheet
        worksheet = workbook.add_sheet(country_i)
        worksheet.col(0).width = 128 * 20  # 设置excel中第A列的宽度(方便日期数据展示)

        current_row_index = 0  # 记录当前所写入数据的行号

        # 将列标题写入excel
        for i, str_col in enumerate(['date', 'confirm_add', 'confirm', 'heal', 'dead', 'suspect']):
            worksheet.write(current_row_index, i, str_col)  # 参数对应 行, 列, 值
        current_row_index += 1

        # 往excel中写入日期
        style = xlwt.XFStyle()
        style.num_format_str = 'YYYY/MM/DD'
        first_data_date = datetime.datetime.strptime('2020.' + data[0]['date'], "%Y.%m.%d")  # 爬取到疫情数据的最早日期
        delta_time = (first_data_date - start_date).days

        # 2020-1-20 到 first_data_date(不含后者) 之间未爬取到疫情数据,下面将这些时间数据写入excel
        for i in range(delta_time):
            worksheet.write(current_row_index, 0, date_list_all[current_row_index - 1], style)
            current_row_index += 1

        # 将抓取到的疫情数据写入excel
        for data_i in data:
            worksheet.write(current_row_index, 0, datetime.datetime.strptime('2020.' + data_i['date'], "%Y.%m.%d"), style)
            worksheet.write(current_row_index, 1, data_i['confirm_add'])
            worksheet.write(current_row_index, 2, data_i['confirm'])
            worksheet.write(current_row_index, 3, data_i['heal'])
            worksheet.write(current_row_index, 4, data_i['dead'])
            worksheet.write(current_row_index, 5, data_i['suspect'])
            current_row_index += 1

def getGlobalDataAndSave(workbook, all_history, date_list_all, start_date, sheet_name = '海外'):
    print("开始爬取 %s 的疫情数据... ... " % sheet_name)
    # 创建一个worksheet
    worksheet = workbook.add_sheet(sheet_name)
    worksheet.col(0).width = 128 * 20  # 设置excel中第A列的宽度(方便日期数据展示)
    # 将列标题写入excel
    current_row_index = 0  # 记录当前所写入数据的行号
    for i, str_col in enumerate(['date', 'confirm', 'dead', 'heal', 'newAddConfirm', 'deadRate', 'healRate']):
        worksheet.write(current_row_index, i, str_col)  # 参数对应 行, 列, 值
    current_row_index += 1

    # 往excel中写入日期
    style = xlwt.XFStyle()
    style.num_format_str = 'YYYY/MM/DD'
    first_data_date = datetime.datetime.strptime('2020.' + all_history[0]['date'], "%Y.%m.%d")  # 爬取到疫情数据的最早日期
    delta_time = (first_data_date - start_date).days
    # 2020-1-20 到 first_data_date(不含后者) 之间未爬取到疫情数据,下面将这些时间数据写入excel
    for i in range(delta_time):
        worksheet.write(current_row_index, 0, date_list_all[current_row_index - 1], style)
        current_row_index += 1

    # 提取海外数据信息,并写入excel
    for daily_history_i in all_history:
        worksheet.write(current_row_index, 0, datetime.datetime.strptime('2020.' + daily_history_i["date"], "%Y.%m.%d"),
                        style)
        worksheet.write(current_row_index, 1, daily_history_i["all"]['confirm'])
        worksheet.write(current_row_index, 2, daily_history_i["all"]['dead'])
        worksheet.write(current_row_index, 3, daily_history_i["all"]['heal'])
        worksheet.write(current_row_index, 4, daily_history_i["all"]['newAddConfirm'])
        worksheet.write(current_row_index, 5, daily_history_i["all"]['deadRate'])
        worksheet.write(current_row_index, 6, daily_history_i["all"]['healRate'])
        current_row_index += 1
    print("%s 的疫情数据爬取完毕" % sheet_name)

def getArticleInfoFromGivedList(workbook, article_list, sheet_name):
    # 创建一个worksheet
    worksheet = workbook.add_sheet(sheet_name)
    if len(article_list) > 0:
        current_row_index = 0

        #设置列宽
        worksheet.col(0).width = 256 * 20
        worksheet.col(1).width = 128 * 20
        worksheet.col(2).width = 512 * 20
        worksheet.col(3).width = 512 * 20
        worksheet.col(4).width = 2048 * 20

        # 将列标题写入excel
        for i, str_col in enumerate(['publish_time', 'media', 'title', 'url', 'desc']):
            worksheet.write(current_row_index, i, str_col)  # 参数对应 行, 列, 值
        current_row_index += 1

        for article_i in article_list[-1:- len(article_list) - 1 : -1]:
            worksheet.write(current_row_index, 0, article_i["publish_time"])
            worksheet.write(current_row_index, 1, article_i["media"])
            worksheet.write(current_row_index, 2, article_i["title"])
            worksheet.write(current_row_index, 3, article_i["url"])
            worksheet.write(current_row_index, 4, article_i["desc"])
            current_row_index += 1


if __name__ == "__main__":
    foreign_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_foreign'
    _, foreign_response = getURLContentGet(foreign_url)
    foreign_json_data = json.loads(foreign_response.text)
    foreign_all_data = json.loads(foreign_json_data['data'])
    foreign_country_list = getForeignCountryList(foreign_all_data)
    #foreign_country_list = ["美国", '意大利','丹麦', '日本本土', '韩国', '加拿大', '德国', '英国']

    countries_and_regions = ['中国', "海外"]
    countries_and_regions.extend(foreign_country_list)

    choice = easygui.multchoicebox("\n\t\t请选择要爬取疫情数据的国家和地区:\t\t\n", title="Python爬虫程序", choices=countries_and_regions,
                                   preselect=[0, 1])

    # 获取日期列表
    date_list_all, start_date = getDateList()

    # 创建一个workbook 设置编码
    workbook = xlwt.Workbook(encoding='utf-8')
    if "中国" in choice:
        del choice[choice.index("中国")]
        china_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
        other_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_other'

        _, china_response = getURLContentGet(china_url)
        _, other_response = getURLContentGet(other_url)

        china_json_data = json.loads(china_response.text)
        other_json_data = json.loads(other_response.text)

        china_all_data = json.loads(china_json_data['data'])
        other_all_data = json.loads(other_json_data['data'])

        china_all_data_area_tree = china_all_data['areaTree'][0]  # china_all_data['areaTree']是list对象,只有一个元素
        china_all_data_article_list = china_all_data['articleList']
        china_all_data_china_day_list = china_all_data['chinaDayList']
        china_all_data_china_day_add_list = china_all_data['chinaDayAddList']
        china_all_data_daily_new_add_history = china_all_data['dailyNewAddHistory']
        china_all_data_daily_history = china_all_data['dailyHistory']

        # 下面的后四项和上面的后四项都代表相同的数据,但是,不一定是同时有数据,有一方可能是空列表(目前是上方的后四项为[]) --怀疑原因:2020.3.23-24 在other_all_data有globalDailyHistory元素,但是2020.3.25晚上就找不到该元素了,导致重写程序。
        other_all_data_article_list = other_all_data['articleList']
        other_all_data_china_day_list = other_all_data['chinaDayList']
        other_all_data_china_day_add_list = other_all_data['chinaDayAddList']
        other_all_data_daily_new_add_history = other_all_data['dailyNewAddHistory']
        other_all_data_daily_history = other_all_data['dailyHistory']

        china_day_list = [other_all_data_china_day_list if len(other_all_data_china_day_list) > len(
            china_all_data_china_day_list) else china_all_data_china_day_list][0]
        daily_new_add_history = \
        [other_all_data_daily_new_add_history if len(other_all_data_daily_new_add_history) > len(
            china_all_data_daily_new_add_history) else china_all_data_daily_new_add_history][0]
        getChinaDataAndSave(workbook, china_day_list, daily_new_add_history, date_list_all, start_date, sheet_name="中国")

    if "海外" in choice:
        del choice[choice.index("海外")]
        foreign_all_data_global_daily_history = foreign_all_data['globalDailyHistory']
        foreign_all_data_foreign_list = foreign_all_data['foreignList']
        foreign_all_data_global_statis = foreign_all_data['globalStatis']
        global_daily_history = foreign_all_data_global_daily_history
        getGlobalDataAndSave(workbook, global_daily_history, date_list_all, start_date, sheet_name="海外")

    if len(choice) > 0:
        getCountryEpidemiSituationInfo(workbook, choice)

    # 保存
    workbook.save('./疫情原始数据.xls')

效果如下:

Python编程-使用爬虫程序爬取肺炎疫情数据-2 爬取给定国家的历史疫情信息_第1张图片

 

Python编程-使用爬虫程序爬取肺炎疫情数据-2 爬取给定国家的历史疫情信息_第2张图片

你可能感兴趣的:(python编程,python编程-欢迎搭建纠错,共同进步)