python-multiprocessing 多进程并行计算

python的multiprocessing包是标准库提供的多进程并行计算包,提供了和threading(多线程)相似的API函数,但是相比于threading,将任务分配到不同的CPU,避免了GIL(Global Interpreter Lock)的限制。下面我们对multiprocessing中的Pool和Process类做介绍。

Pool

采用Pool进程池对任务并行处理更加方便,我们可以指定并行的CPU个数,然后 Pool 会自动把任务放到进程池中运行。 Pool 包含了多个并行函数。

apply apply_async

apply 要逐个执行任务,在python3中已经被弃用,而apply_async是apply的异步执行版本。并行计算一定要采用apply_async函数。


import multiprocessing
import time

from random import randint, seed

def f(num):
    seed()
    rand_num = randint(0,10) # 每次都随机生成一个停顿时间
    time.sleep(rand_num)
    return (num, rand_num)

start_time = time.time()
cores = multiprocessing.cpu_count()
pool = multiprocessing.Pool(processes=cores)
pool_list = []
result_list = []
start_time = time.time()
for xx in xrange(10):
    pool_list.append(pool.apply_async(f, (xx, )))  # 这里不能 get, 会阻塞进程

result_list = [xx.get() for xx in pool_list]
#在这里不免有人要疑问,为什么不直接在 for 循环中直接 result.get()呢?这是因为pool.apply_async之后的语句都是阻塞执行的,调用 result.get() 会等待上一个任务执行完之后才会分配下一个任务。事实上,获取返回值的过程最好放在进程池回收之后进行,避免阻塞后面的语句。

# 最后我们使用一下语句回收进程池:   
pool.close()
pool.join()

print result_list
print '并行花费时间 %.2f' % (time.time() - start_time)
print '串行花费时间 %.2f' % (sum([xx[1] for xx in  result_list]))

#[(0, 8), (1, 2), (2, 4), (3, 9), (4, 0), (5, 1), (6, 8), (7, 3), (8, 4), (9, 6)]
#并行花费时间 14.11
#串行花费时间 45.00

map map_async

map_async 是 map的异步执行函数。
相比于 apply_async, map_async 只能接受一个参数。


import time
from multiprocessing import Pool
def run(fn):
  #fn: 函数参数是数据列表的一个元素
  time.sleep(1)
  return fn*fn

if __name__ == "__main__":
  testFL = [1,2,3,4,5,6]  
  print '串行:' #顺序执行(也就是串行执行,单进程)
  s = time.time()
  for fn in testFL:
    run(fn)

  e1 = time.time()
  print "顺序执行时间:", int(e1 - s)

  print '并行:' #创建多个进程,并行执行
  pool = Pool(4)  #创建拥有5个进程数量的进程池
  #testFL:要处理的数据列表,run:处理testFL列表中数据的函数
  rl =pool.map(run, testFL) 
  pool.close()#关闭进程池,不再接受新的进程
  pool.join()#主进程阻塞等待子进程的退出
  e2 = time.time()
  print "并行执行时间:", int(e2-e1)
  print rl

# 串行:
# 顺序执行时间: 6
# 并行:
# 并行执行时间: 2
# [1, 4, 9, 16, 25, 36]

Process

采用Process必须注意的是,Process对象来创建进程,每一个进程占据一个CPU,所以要建立的进程必须 小于等于 CPU的个数。如果启动进程数过多,特别是当遇到CPU密集型任务,会降低并行的效率。

#16.6.1.1. The Process class
from multiprocessing import Process, cpu_count
import os
import time

start_time = time.time()
def info(title):
#     print(title)
    if hasattr(os, 'getppid'):  # only available on Unix
        print 'parent process:', os.getppid()
    print 'process id:', os.getpid()
    time.sleep(3)

def f(name):
    info('function f')
    print 'hello', name

if __name__ == '__main__':
#     info('main line')
    p_list = [] # 保存Process新建的进程
    cpu_num = cpu_count()
    for xx in xrange(cpu_num):
        p_list.append(Process(target=f, args=('xx_%s' % xx,)))
    for xx in p_list:
        xx.start()

    for xx in p_list:
        xx.join()
    print('spend time: %.2f' % (time.time() - start_time))
parent process: 11741
# parent process: 11741
# parent process: 11741
# process id: 12249
# process id: 12250
# parent process: 11741
# process id: 12251
# process id: 12252
# hello xx_1
# hello xx_0
# hello xx_2
# hello xx_3
# spend time: 3.04

进程间通信

Process和Pool均支持Queues 和 Pipes 两种类型的通信。

Queue 队列

队列遵循先进先出的原则,可以在各个进程间使用。


# 16.6.1.2. Exchanging objects between processes
# Queues

from multiprocessing import Process, Queue

def f(q):
    q.put([42, None, 'hello'])

if __name__ == '__main__':
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print q.get()    # prints "[42, None, 'hello']"
    p.join()

pipe

from multiprocessing import Process, Pipe

def f(conn):
    conn.send([42, None, 'hello'])
    conn.close()

if __name__ == '__main__':
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(child_conn,))
    p.start()
    print parent_conn.recv()   # prints "[42, None, 'hello']"
    p.join()

queue 与 pipe比较

  • Pipe() can only have two endpoints.
  • Queue() can have multiple producers and consumers.
    When to use them

    If you need more than two points to communicate, use a Queue().

    If you need absolute performance, a Pipe() is much faster because Queue() is built on top of Pipe().

参考:
https://stackoverflow.com/questions/8463008/python-multiprocessing-pipe-vs-queue

共享资源

多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。

共享内存

共享内存仅适用于 Process 类,不能用于进程池 Pool

# 16.6.1.4. Sharing state between processes
# Shared memory
from multiprocessing import Process, Value, Array

def f(n, a):
    n.value = 3.1415927
    for i in range(len(a)):
        a[i] = -a[i]

if __name__ == '__main__':
    num = Value('d', 0.0)
    arr = Array('i', range(10))

    p = Process(target=f, args=(num, arr))
    p.start()
    p.join()

    print num.value
    print arr[:]

# 3.1415927
# [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

Manager Class

Manager Class 既可以用于Process 也可以用于进程池 Pool。


from multiprocessing import Manager, Process
def f(d, l, ii):
    d[ii] = ii
    l.append(ii)

if __name__ == '__main__':
    manager = Manager()

    d = manager.dict()
    l = manager.list(range(10))
    p_list = [] 
    for xx in range(4):
        p_list.append(Process(target=f, args=(d, l, xx)))
    for xx in p_list:
        xx.start()

    for xx in p_list:
        xx.join()
    print d
    print l
# {0: 0, 1: 1, 2: 2, 3: 3}
# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3]

你可能感兴趣的:(技术文档,python)