EM算法系列(二)-Jenson不等式

EM算法的推导过程中用到的一个很重要的不等式就是琴生不等式(Jenson inequality),相信大家在高等数学的课程中都学习过这个不等式,这里只简单回顾一下这个不等式的性质:

Jensen不等式

设f是定义域为实数的函数,如果对于所有的实数x。如果对于所有的实数x,f(x)的二次导数大于等于0,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的,那么f是凸函数。如果只大于0,不等于0,那么称f是严格凸函数。
Jensen不等式表述如下:
如果f是凸函数,X是随机变量,那么:E[f(X)]>=f(E[X])
特别地,如果f是严格凸函数,当且仅当X是常量时,上式取等号。
如果用图表示会很清晰:

EM算法系列(二)-Jenson不等式_第1张图片
Jenson不等式

图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到E[f(X)]>=f(E[X])成立。
当f是(严格)凹函数当且仅当-f是(严格)凸函数。
Jensen不等式应用于凹函数时,不等号方向反向。

你可能感兴趣的:(EM算法系列(二)-Jenson不等式)