jvm:垃圾回收机制(GC)

Jvm年轻代 GC(Minor GC)

1. GC机制的基本算法是:分代收集
(1) HotSpot JVM把年轻代分为了三部分:1个Eden区和2个Survivor区(分别叫from和to)。默认比例为8:1。
(2) 一般情况下,新创建的对象都会被分配到Eden区(一些大对象特殊处理),这些对象经过第一次Minor GC后,如果仍然存活,将会被移到Survivor区。
(3) 对象在Survivor区中每熬过一次Minor GC,年龄就会增加1岁,当它的年龄增加到一定程度时,就会被移动到年老代中。

2. 在新生代中,使用 “停止-复制”(使用一个或多个 进行GC,其它工作线程暂停 ) 算法进行清理 当Eden区满的时候会触发MinorGC
(1)在GC开始的时候,对象只会存在于Eden区和名为“From”的Survivor区,Survivor区“To”是空的。
(2)紧接着进行GC,Eden区中所有存活的对象都会被复制到“To”,而在“From”区中,仍存活的对象会根据他们的年龄值来决定去向。年龄达到一定值(年龄阈值,可以通过-XX:MaxTenuringThreshold来设置)的对象会被移动到年老代中,没有达到阈值的对象会被复制到“To”区域。
(3)经过这次GC后,Eden区和From区已经被清空。这个时候,“From”和“To”会交换他们的角色,也就是新的“To”就是上次GC前的“From”,新的“From”就是上次GC前的“To”。不管怎样,都会保证名为To的Survivor区域是空的。Minor GC会一直重复这样的过程,直到“To”区被填满,“To”区被填满之后,会将所有对象移动到年老代中。

jvm:垃圾回收机制(GC)_第1张图片

Jvm老年代GC(Full GC/Major GC):

1. 老年代存储的对象比年轻代多得多,而且不乏大对象,对老年代进行内存清理时,如果使用停止-复制算法,则相当低效。


2. 一般,老年代用的算法是标记-整理算法,即:标记出仍然存活的对象(存在引用的),将所有存活的对象向一端移动,以保证内存的连续。
 在发生Minor GC时,虚拟机会检查每次晋升进入老年代的大小是否大于老年代的剩余空间大小

(1) 如果大于,则直接触发一次Full GC,否则,就查看是否设 置了-XX:+HandlePromotionFailure(允许担保失败),

1)如果允许,则只会进行MinorGC,此时可以容忍内存分配失败;

2)如果不 允许,则仍然进行Full GC(这代表着如果设置-XX:+Handle PromotionFailure,则触发MinorGC就会同时触发Full GC,哪怕老年代还有很多内存,所以,最好不要这样做)。


jvm方法区(永久代):

1. 永久代的回收有两种:常量池中的常量,无用的类信息,常量的回收很简单,没有引用了就可以被回收。

永久代的回收并不是必须的,可以通过参数来设置是否对类进行回收。HotSpot提供-Xnoclassgc进行控制


2. 对于无用的类进行回收,必须保证3点:

(1) 类的所有实例都已经被回收

(2) 加载类的ClassLoader已经被回收

(3) 类对象的Class对象没有被引用(即没有通过反射引用该类的地方)


垃圾收集器
jvm:垃圾回收机制(GC)_第2张图片

在新生代采用的停止复制算法中,“停 止(Stop-the-world)”的意义是在回收内存时,需要暂停其他所 有线程的执行。这个是很低效的,现在的各种新生代收集器越来越优化这一点,但仍然只是将停止的时间变短,并未彻底取消停止。

  • Serial收集器:新生代收集器,使用停止复制算法,使用一个线程进行GC,其它工作线程暂停。使用-XX:+UseSerialGC可以使用Serial+Serial Old模式运行进行内存回收(这也是虚拟机在Client模式下运行的默认值
  • ParNew收集器:新生代收集器,使用停止复制算法,Serial收集器的多线程版,用多个线程进行GC,其它工作线程暂停,关注缩短垃圾收集时间。使用-XX:+UseParNewGC开关来控制使用ParNew+Serial Old收集器组合收集内存;使用-XX:ParallelGCThreads来设置执行内存回收的线程数。
  • Parallel Scavenge 收集器:新生代收集器,使用停止复制算法,关注CPU吞吐量,即运行用户代码的时间/总时间,比如:JVM运行100分钟,其中运行用户代码99分钟,垃圾收集1分钟,则吞吐量是99%,这种收集器能最高效率的利用CPU,适合运行后台运算(关注缩短垃圾收集时间的收集器,如CMS,等待时间很少,所以适合用户交互,提高用户体验)。使用-XX:+UseParallelGC开关控制使用 Parallel Scavenge+Serial Old收集器组合回收垃圾(这也是在Server模式下的默认值);使用-XX:GCTimeRatio来设置用户执行时间占总时间的比例,默认99,即 1%的时间用来进行垃圾回收。使用-XX:MaxGCPauseMillis设置GC的最大停顿时间(这个参数只对Parallel Scavenge有效)
  • Serial Old收集器:老年代收集器,单线程收集器,使用标记整理(整理的方法是Sweep(清理)和Compact(压缩),清理是将废弃的对象干掉,只留幸存 的对象,压缩是将移动对象,将空间填满保证内存分为2块,一块全是对象,一块空闲)算法,使用单线程进行GC,其它工作线程暂停(注意,在老年代中进行标记整理算法清理,也需要暂停其它线程),在JDK1.5之前,Serial Old收集器与ParallelScavenge搭配使用。
  • Parallel Old收集器:老年代收集器,多线程,多线程机制与Parallel Scavenge差不错,使用标记整理(与Serial Old不同,这里的整理是Summary(汇总)和Compact(压缩),汇总的意思就是将幸存的对象复制到预先准备好的区域,而不是像Sweep(清 理)那样清理废弃的对象)算法,在Parallel Old执行时,仍然需要暂停其它线程。Parallel Old在多核计算中很有用。Parallel Old出现后(JDK 1.6),与Parallel Scavenge配合有很好的效果,充分体现Parallel Scavenge收集器吞吐量优先的效果。使用-XX:+UseParallelOldGC开关控制使用Parallel Scavenge +Parallel Old组合收集器进行收集。
  • CMS(Concurrent Mark Sweep)收集器:老年代收集器,致力于获取最短回收停顿时间,使用标记清除算法,多线程,优点是并发收集(用户线程可以和GC线程同时工作),停顿小。使用-XX:+UseConcMarkSweepGC进行ParNew+CMS+Serial Old进行内存回收,优先使用ParNew+CMS(原因见后面),当用户线程内存不足时,采用备用方案Serial Old收集。
CMS收集的方法是:先3次标记,再1次清除,3次标记中前两次是初始标记和重新标记(此时仍然需要停止(stop the world)), 初始标记(Initial Remark)是标记GC Roots能关联到的对象(即有引用的对象),停顿时间很短;并发标记(Concurrent remark)是执行GC Roots查找引用的过程,不需要用户线程停顿;重新标记(Remark)是在初始标记和并发标记期间,有标记变动的那部分仍需要标记,所以加上这一部分 标记的过程,停顿时间比并发标记小得多,但比初始标记稍长。在完成标记之后,就开始并发清除,不需要用户线程停顿。
所以在CMS清理过程中,只有初始标记和重新标记需要短暂停顿,并发标记和并发清除都不需要暂停用户线程,因此效率很高,很适合高交互的场合。
CMS也有缺点,它需要消耗额外的CPU和内存资源,在CPU和内存资源紧张,CPU较少时,会加重系统负担(CMS默认启动线程数为(CPU数量+3)/4)。
另外,在并发收集过程中,用户线程仍然在运行,仍然产生内存垃圾,所以可能产生“浮动垃圾”,本次无法清理,只能下一次Full GC才清理,因此在GC期间,需要预留足够的内存给用户线程使用。所以使用CMS的收集器并不是老年代满了才触发Full GC,而是在使用了一大半(默认68%,即2/3,使用-XX:CMSInitiatingOccupancyFraction来设置)的时候就要进行Full GC,如果用户线程消耗内存不是特别大,可以适当调高-XX:CMSInitiatingOccupancyFraction以降低GC次数,提高性能,如果预留的用户线程内存不够,则会触发Concurrent Mode Failure,此时,将触发备用方案:使用Serial Old 收集器进行收集,但这样停顿时间就长了,因此-XX:CMSInitiatingOccupancyFraction不宜设的过大。
还有,CMS采用的是标记清除算法,会导致内存碎片的产生,可以使用-XX:+UseCMSCompactAtFullCollection来设置是否在Full GC之后进行碎片整理,用-XX:CMSFullGCsBeforeCompaction来设置在执行多少次不压缩的Full GC之后,来一次带压缩的Full GC。
 
  • G1收集器:在JDK1.7中正式发布,与现状的新生代、老年代概念有很大不同,目前使用较少,不做介绍。

你可能感兴趣的:(jvm)