【甘道夫】HBase(0.96以上版本)过滤器Filter详解及实例代码

说明:
本文参考官方 Ref Guide, Developer API和众多博客,并结合实测代码编写,详细总结HBase的Filter功能,并附上每类Filter的相应代码实现。
本文尽量遵从 Ref Guide中“9.4. Client Request Filters”的行文顺序,便于读者对比查看,但内容比官方文档更加详实。

***2014年7月18日更新,新增PageFilter和SkipFilter。***

欢迎转载,请注明来源:
http://blog.csdn.net/u010967382/article/details/37653177


目录:
引言 -- 参数基础
1. 结构(Structural)过滤器--FilterList
2.列值过滤器--SingleColumnValueFilter
        2.1.第一种构造函数情况 -- 比较的关键字是字符数组
        2.2.第二种构造函数情况 -- 比较的关键字是比较器ByteArrayComparable
3.键值元数据
        3.1. 基于列族过滤数据的FamilyFilter
        3.2. 基于限定符Qualifier(列)过滤数据的QualifierFilter
        3.3. 基于列名(即Qualifier)前缀过滤数据的ColumnPrefixFilter
        3.4. 基于多个列名(即Qualifier)前缀过滤数据的MultipleColumnPrefixFilter
        3.5. 基于列范围(不是行范围)过滤数据ColumnRangeFilter
4. RowKey
5. PageFilter
6. SkipFilter
7. Utility--FirstKeyOnlyFilter
8. 取得查询结果


引言 -- 参数基础
有两个参数类在各类Filter中经常出现,统一介绍下:
(1)比较运算符 CompareFilter.CompareOp
比较运算符用于定义比较关系,可以有以下几类值供选择:
  1. EQUAL                                  相等
  2. GREATER                              大于
  3. GREATER_OR_EQUAL           大于等于
  4. LESS                                      小于
  5. LESS_OR_EQUAL                  小于等于
  6. NOT_EQUAL                        不等于

(2)比较器  ByteArrayComparable
通过比较器可以实现多样化目标匹配效果,比较器 有以下子类可以使用:
  1. BinaryComparator               匹配完整字节数组 
  2. BinaryPrefixComparator     匹配字节数组前缀 
  3. BitComparator
  4. NullComparator
  5. RegexStringComparator    正则表达式匹配
  6. SubstringComparator        子串匹配


1. 结构(Structural)过滤器--FilterList
FilterList 代表一个 过滤器链 ,它可以包含一组即将应用于目标数据集的过滤器 ,过滤器间具有“与”   FilterList.Operator.MUST_PASS_ALL   和“或”  FilterList.Operator.MUST_PASS_ONE  关系。

官网实例代码, 两个 或” 关系的 过滤器 的写法:
FilterList list = new FilterList(FilterList.Operator.MUST_PASS_ONE);   //数据只要满足一组过滤器中的一个就可以
SingleColumnValueFilter filter1 = new SingleColumnValueFilter(
cf,
column,
CompareOp.EQUAL,
Bytes.toBytes("my value")
);
list.add(filter1);
SingleColumnValueFilter filter2 = new SingleColumnValueFilter(
cf,
column,
CompareOp.EQUAL,
Bytes.toBytes("my other value")
);
list.add(filter2);
Scan scan = new Scan();
scan.setFilter(list);

2. 列值过滤器--SingleColumnValueFilter
SingleColumnValueFilter 用于测试 列值 相等 (CompareOp.EQUAL ), 不等 (CompareOp.NOT_EQUAL),或单侧范围 (e.g., CompareOp.GREATER)
构造函数:
(1)比较的关键字是一个字符数组
SingleColumnValueFilter(byte[] family, byte[] qualifier, CompareFilter.CompareOp compareOp, byte[] value)
(2)比较的关键字是一个比较器(比较器下一小节做介绍)
SingleColumnValueFilter(byte[] family, byte[] qualifier, CompareFilter.CompareOp compareOp,  ByteArrayComparable comparator)

2.1.第一种构造函数情况 -- 比较的关键字是字符数组
官网示例代码 检查列值和字符串'my value' 相等:
SingleColumnValueFilter filter = new SingleColumnValueFilter(
cf,
column,
CompareOp.EQUAL,
Bytes.toBytes("my value")
);
scan.setFilter(filter);

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL);  
        SingleColumnValueFilter filter = new SingleColumnValueFilter(
                Bytes.toBytes("patentinfo"),
                Bytes.toBytes("CREATE_TIME"),
                CompareOp.EQUAL,
                Bytes.toBytes("2013-06-08")
                );
        filterList.addFilter(filter);
        Scan scan = new Scan();
        scan.setFilter(filterList);
        ResultScanner rs = table.getScanner(scan);
        for (Result r : rs) {
            System.out.println("Scan: " + r);
        }
        table.close();  
注意:还是大写问题,HBase的列名必须大写!


2.2.第二种构造函数情况 -- 比较的关键字是比较器 ByteArrayComparable
该章节主要是针对 SingleColumnValueFilter的 第二种构造函数使用情况做了一些举例:
(1)支持值比较的正则表达式 -- RegexStringComparator
官网示例代码
RegexStringComparator  comp = new  RegexStringComparator("my.");   //任意以my打头的值
SingleColumnValueFilter filter = new SingleColumnValueFilter(
cf,
column,
CompareOp.EQUAL,
comp
);
scan.setFilter(filter);

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL);
        
        RegexStringComparator comp = new RegexStringComparator("2013-06-1.");
        
        SingleColumnValueFilter filter = new SingleColumnValueFilter(
                Bytes.toBytes("patentinfo"),
                Bytes.toBytes("CREATE_TIME"),
                CompareOp.EQUAL,
                comp
                );
        filterList.addFilter(filter);
        Scan scan = new Scan();
        scan.setFilter(filterList);
        ResultScanner rs = table.getScanner(scan);
        for (Result r : rs) {
            System.out.println("Scan: " + r);
        }
        table.close();  

(2)检测一个子串是否存在于值中( 大小写不敏感 ) -- SubstringComparator
官网示例代码:
SubstringComparator comp = new  SubstringComparator("y val");   // looking for 'my value'
SingleColumnValueFilter filter = new SingleColumnValueFilter(
cf,
column,
CompareOp.EQUAL,
comp
);
scan.setFilter(filter);

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL);
        
//        RegexStringComparator comp = new RegexStringComparator("2013-06-1.");
        SubstringComparator comp = new SubstringComparator("2013-06-1");
        
        SingleColumnValueFilter filter = new SingleColumnValueFilter(
                Bytes.toBytes("patentinfo"),
                Bytes.toBytes("CREATE_TIME"),
                CompareOp.EQUAL,
                comp
                );
        filterList.addFilter(filter);
        Scan scan = new Scan();
        scan.setFilter(filterList);
        ResultScanner rs = table.getScanner(scan);
        for (Result r : rs) {
            System.out.println("Scan: " + r);
        }
        table.close();  

(3)BinaryComparator
二进制比较器,用得较少,有需要请自行查阅官网:http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/BinaryComparator.html

(4)BinaryPrefixComparator
二进制前缀比较器 ,用得较少 ,有需要请自行查阅官网:http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/BinaryPrefixComparator.html

3. 键值元数据
由于HBase 采用 键值对保存内部数据, 键值元数据过滤器评估一行的 (ColumnFamily:Qualifiers) 是否存在  , 对应前节所述值的情况。

3.1. 基于列族过滤数据的FamilyFilter
构造函数:
FamilyFilter(CompareFilter.CompareOp familyCompareOp, ByteArrayComparable familyComparator)

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        /**
         * FamilyFilter构造函数中第二个参数是ByteArrayComparable类型
         * ByteArrayComparable类参见“引言-参数基础”章节
         * 下面仅以最可能用到的BinaryComparator、BinaryPrefixComparator举例:
         */
        FamilyFilter ff = new FamilyFilter(
                CompareFilter.CompareOp.EQUAL , 
                new BinaryComparator(Bytes.toBytes("pat"))   //表中不存在pat列族,过滤结果为空
                );
        FamilyFilter ff1 = new FamilyFilter(
                CompareFilter.CompareOp.EQUAL , 
                new BinaryPrefixComparator(Bytes.toBytes("pat"))   //表中存在以pat打头的列族patentinfo,过滤结果为该列族所有行
                );
        Scan scan = new Scan();
        scan.setFilter(ff1);
        ResultScanner rs = table.getScanner(scan);  

注意:
  1. 如果希望查找的是一个已知的列族,则使用 scan.addFamily(family)  比使用过滤器效率更高;
  2. 由于目前HBase对多列族支持不完善,所以该过滤器目前用途不大。

3.2. 基于限定符Qualifier(列)过滤数据QualifierFilter
构造函数:
QualifierFilter(CompareFilter.CompareOp op, ByteArrayComparable qualifierComparator)

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        /**
         * QualifierFilter构造函数中第二个参数是ByteArrayComparable类型
         * ByteArrayComparable类有以下子类可以使用:
         * *******************************************
         * BinaryComparator  匹配完整字节数组, 
         * BinaryPrefixComparator  匹配开始的部分字节数组, 
         * BitComparator, 
         * NullComparator, 
         * RegexStringComparator,   正则表达式匹配
         * SubstringComparator
         * *******************************************
         * 下面仅以最可能用到的BinaryComparator、BinaryPrefixComparator举例:
         */
        QualifierFilter ff = new QualifierFilter(
                CompareFilter.CompareOp.EQUAL , 
                new BinaryComparator(Bytes.toBytes("belong"))   //表中不存在belong列,过滤结果为空
                );
        QualifierFilter ff1 = new QualifierFilter(
                CompareFilter.CompareOp.EQUAL , 
                new BinaryPrefixComparator(Bytes.toBytes("BELONG"))   //表中存在以BELONG打头的列BELONG_SITE,过滤结果为所有行的该列数据
                );
        Scan scan = new Scan();
        scan.setFilter(ff1);
        ResultScanner rs = table.getScanner(scan);  
说明:
  1. 一旦涉及到列(Qualifier),HBase就只认大写字母了!
  2. 该过滤器应该比FamilyFilter更常用!

3.3. 基于列名(即Qualifier)前缀过滤数据的ColumnPrefixFilter  ( 该功能用QualifierFilter也能实现 )
构造函数:
ColumnPrefixFilter(byte[] prefix) 

注意:
一个列名是可以出现在多个列族中的,该过滤器将返回所有列族中匹配的列。

官网示例代码,查找所有"abc"打头的列:
HTableInterface t = ...;
byte[] row = ...;
byte[] family = ...;
byte[] prefix = Bytes.toBytes("abc");
Scan scan = new Scan(row, row); // (optional) limit to one row
scan.addFamily(family); // (optional) limit to one family
Filter f = new ColumnPrefixFilter(prefix);
scan.setFilter(f);
scan.setBatch(10); // set this if there could be many columns returned
ResultScanner rs = t.getScanner(scan);
for (Result r = rs.next(); r != null; r = rs.next()) {
  for (KeyValue kv : r.raw()) {
    // each kv represents a column
  }
}
rs.close();

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        //返回所有行中以BELONG打头的列的数据  
        ColumnPrefixFilter ff1 = new ColumnPrefixFilter(Bytes.toBytes("BELONG"));
        Scan scan = new Scan();
        scan.setFilter(ff1);
        ResultScanner rs = table.getScanner(scan);  


3.4. 基于多个列名(即Qualifier)前缀过滤数据的MultipleColumnPrefixFilter
说明:
MultipleColumnPrefixFilter 和 ColumnPrefixFilter 行为差不多,但可以指定 多个前缀

官方示例代码,查找所有"abc"或"xyz"打头的列:
HTableInterface t = ...;
byte[] row = ...;
byte[] family = ...;
byte[][] prefixes = new byte[][] {Bytes.toBytes("abc"), Bytes.toBytes("xyz")};
Scan scan = new Scan(row, row); // (optional) limit to one row
scan.addFamily(family); // (optional) limit to one family
Filter f = new MultipleColumnPrefixFilter(prefixes);
scan.setFilter(f);
scan.setBatch(10); // set this if there could be many columns returned
ResultScanner rs = t.getScanner(scan);
for (Result r = rs.next(); r != null; r = rs.next()) {
  for (KeyValue kv : r.raw()) {
    // each kv represents a column
  }
}
rs.close();

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        
        byte[][] prefixes = new byte[][] {Bytes.toBytes("BELONG"), Bytes.toBytes("CREATE")};
        //返回所有行中以BELONG或者CREATE打头的列的数据
        MultipleColumnPrefixFilter ff = new MultipleColumnPrefixFilter(prefixes);

        Scan scan = new Scan();
        scan.setFilter(ff);
        ResultScanner rs = table.getScanner(scan);  


3.5. 基于列范围(不是行范围)过滤数据ColumnRangeFilter
说明:
  1. 可用于获得一个范围的列,例如,如果你的一行中有百万个列,但是你只希望查看列名为bbbb到dddd的范围
  2. 该方法从 HBase 0.92 版本开始引入
  3. 一个列名是可以出现在多个列族中的,该过滤器将返回所有列族中匹配的列

构造函数:
ColumnRangeFilter(byte[] minColumn, boolean minColumnInclusive, byte[] maxColumn, boolean maxColumnInclusive)
参数解释:
  • minColumn - 列范围的最小值,如果为空,则没有下限;
  • minColumnInclusive - 列范围是否包含minColumn 
  • maxColumn - 列范围最大值,如果为空,则没有上限;
  • maxColumnInclusive - 列范围是否包含maxColumn 。

官网示例代码,查找列名在"bbbb"到"dddd"范围的数据
HTableInterface t = ...;
byte[] row = ...;
byte[] family = ...;
byte[] startColumn = Bytes.toBytes("bbbb");
byte[] endColumn = Bytes.toBytes("bbdd");
Scan scan = new Scan(row, row); // (optional) limit to one row
scan.addFamily(family); // (optional) limit to one family
Filter f = new ColumnRangeFilter(startColumn, true, endColumn, true);
scan.setFilter(f);
scan.setBatch(10); // set this if there could be many columns returned
ResultScanner rs = t.getScanner(scan);
for (Result r = rs.next(); r != null; r = rs.next()) {
  for (KeyValue kv : r.raw()) {
    // each kv represents a column
  }
}
rs.close();

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        
        byte[] startColumn = Bytes.toBytes("C");
        byte[] endColumn = Bytes.toBytes("D");
        //返回所有列中从C到D打头的范围的数据,实际返回类似CREATOR、CREATE_TIME、CHANNEL_CODE等列的数据
        ColumnRangeFilter ff = new ColumnRangeFilter(startColumn, true, endColumn, true);
        
        Scan scan = new Scan();
        scan.setFilter(ff);
        ResultScanner rs = table.getScanner(scan);  

4. RowKey
当需要 根据行键特征查找一个范围的行数据时,使用 Scan的 startRow和stopRow会更高效,但是, startRow和stopRow只能匹配行键的开始字符,而不能匹配中间包含的字符
        byte[] startColumn = Bytes.toBytes("aaa");
        byte[] endColumn = Bytes.toBytes("bbb");
        Scan scan = new Scan(startColumn,endColumn);
  
当需要针对行键进行更复杂的过滤时,可以使用 RowFilter:

构造函数:
RowFilter(CompareFilter.CompareOp rowCompareOp, ByteArrayComparable rowComparator)
参数解释 参见“引言-参数基础”章节。

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        /**
         * rowkey格式为:创建日期_ 发布日期_ID_TITLE
         * 目标:查找  发布日期  为  2013-07-16  的数据
         */
        RowFilter rf = new RowFilter(
                CompareFilter.CompareOp.EQUAL , 
                new SubstringComparator("_2013-07-16_")   
                );
        Scan scan = new Scan();
        scan.setFilter(rf);
        ResultScanner rs = table.getScanner(scan);  
注意:
测试过程中尝试通过组合使用两个RowFilter( CompareFilter.CompareOp参数分别为 GREATER_OR_EQUAL LESS_OR_EQUAL ),和 SubstringComparator, 过滤找出指定发布时间范围内的数据,但结果比较意外,不是预想的数据,估计比较运算符 GREATER_OR_EQUAL LESS_OR_EQUAL 和比较器 SubstringComparator组合使用效果不太好,慎用。

5.PageFilter
指定页面行数,返回对应行数的结果集。
需要注意的是,该过滤器 并不能保证返回的结果行数小于等于指定的页面行数,因为过滤器是分别作用到各个region server的,它只能保证当前region返回的结果行数不超过指定页面行数。

构造函数:
PageFilter(long pageSize)

实测代码(从“2013-07-26”行开始,取5行):
            Scan scan = new Scan();
            scan.setStartRow(Bytes.toBytes("2013-07-26"));
            PageFilter pf = new PageFilter(5L);
            scan.setFilter(pf);
            ResultScanner rs = table.getScanner(scan);
            for (Result r : rs) {
                for (Cell cell : r.rawCells()) {
                    System.out.println("Rowkey : " + Bytes.toString(r.getRow())
                            + "   Familiy:Quilifier : "
                            + Bytes.toString(CellUtil.cloneQualifier(cell))
                            + "   Value : "
                            + Bytes.toString(CellUtil.cloneValue(cell))
                            + "   Time : " + cell.getTimestamp());
                }
            }  
注意:
由于 该过滤器 并不能保证返回的结果行数小于等于指定的页面行数 ,所以更好的返回指定行数的办法是 ResultScanner.next(int nbRows) ,即:
            ResultScanner rs = table.getScanner(scan);
            for (Result r : rs.next(5)) {
                for (Cell cell : r.rawCells()) {
                    System.out.println("Rowkey : " + Bytes.toString(r.getRow())
                            + "   Familiy:Quilifier : "
                            + Bytes.toString(CellUtil.cloneQualifier(cell))
                            + "   Value : "
                            + Bytes.toString(CellUtil.cloneValue(cell))
                            + "   Time : " + cell.getTimestamp());
                }
            }  


6.SkipFilter
根据整行中的每个列来做过滤,只要存在一列不满足条件,整行都被过滤掉。
例如,如果一行中的所有列代表的是不同物品的重量,则真实场景下这些数值都必须大于零,我们希望将那些包含任意列值为0的行都过滤掉。
在这个情况下,我们结合ValueFilter和SkipFilter共同实现该目的:
scan.setFilter(new SkipFilter(new ValueFilter(CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes(0))));

构造函数:
SkipFilter(Filter filter) 

个人实测代码:
目前的数据:
hbase(main):009:0> scan 'rd_ns:itable'
ROW                         COLUMN+CELL
 100001                     column=info:address, timestamp=1405417403438, value=anywhere
 100001                     column=info:age, timestamp=1405417403438, value=24
 100001                     column=info:name, timestamp=1405417403438, value=zhangtao
 100002                     column=info:address, timestamp=1405417426693, value=shangdi
 100002                     column=info:age, timestamp=1405417426693, value=28
 100002                     column=info:name, timestamp=1405417426693, value=shichao
 100003                     column=info:address, timestamp=1405494141522, value=huilongguan
 100003                     column=info:age, timestamp=1405494999631, value=29
 100003                     column=info:name, timestamp=1405494141522, value=liyang
3 row(s) in 0.0190 seconds

执行以下代码:
        Configuration conf = HBaseConfiguration.create();
        HTable table = new HTable(conf, "rd_ns:itable");
        Scan scan = new Scan();
        scan.setFilter(new SkipFilter(new ValueFilter(CompareOp.NOT_EQUAL,
                new BinaryComparator(Bytes.toBytes("28")))));
        ResultScanner rs = table.getScanner(scan);
        for (Result r : rs) {
            for (Cell cell : r.rawCells()) {
                System.out.println("Rowkey : " + Bytes.toString(r.getRow())
                        + "   Familiy:Quilifier : "
                        + Bytes.toString(CellUtil.cloneQualifier(cell))
                        + "   Value : "
                        + Bytes.toString(CellUtil.cloneValue(cell))
                        + "   Time : " + cell.getTimestamp());
            }
        }
        table.close();  
输出结果(整个100002行被过滤掉了):
Rowkey : 100001   Familiy:Quilifier : address   Value : anywhere   Time : 1405417403438
Rowkey : 100001   Familiy:Quilifier : age   Value : 24   Time : 1405417403438
Rowkey : 100001   Familiy:Quilifier : name   Value : zhangtao   Time : 1405417403438
Rowkey : 100003   Familiy:Quilifier : address   Value : huilongguan   Time : 1405494141522
Rowkey : 100003   Familiy:Quilifier : age   Value : 29   Time : 1405494999631
Rowkey : 100003   Familiy:Quilifier : name   Value : liyang   Time : 1405494141522  

7. Utility--FirstKeyOnlyFilter
该过滤器仅仅返回每一行中的第一个cell的值, 可以用于高效的执行行数统计操作。
估计实战意义不大。

构造函数:
public FirstKeyOnlyFilter()

个人实测代码:
        HTable table = HBaseDAO.getHTable("147patents");
        FirstKeyOnlyFilter fkof = new FirstKeyOnlyFilter();
        Scan scan = new Scan();
        scan.setFilter(fkof);
        ResultScanner rs = table.getScanner(scan);  


8. 取得查询结果
无论是官网的 Ref Guide还是网上流传的大部分博客中,输出查询结果的代码都是:
for (Result r = rs.next(); r != null; r = rs.next()) {
  for (KeyValue kv : r.raw()) {
    // each kv represents a column
  }
}

但查看最新的API可知Result实例的raw()方法已经不建议使用了:
raw() Deprecated. as of 0.96, use rawCells()

0.96以后版本正确的获取结果代码如下:
        for (Result r : rs) {
            for (Cell cell : r.rawCells()) {
                System.out.println(
                        "Rowkey : "+Bytes.toString(r.getRow())+
                        "Familiy:Quilifier : "+Bytes.toString(CellUtil.cloneQualifier(cell))+
                        "Value : "+Bytes.toString(CellUtil.cloneValue(cell))
                        );
            }
        }  

你可能感兴趣的:(HBase,Hadoop2.0)