python连接数据库及操作数据库

在数据分析过程中往往要操作较大的数据集,这就需要连接数据库进行操作

import pandas as pd
import numpy as np
from pandas import Series,DataFrame
from sqlalchemy import create_engine
import MySQLdb as msd
# 先自定义函数将表格写入数据库里,以备操作过程中有些数据要写入数据库
def savetosql(DF,tablename):
    import pandas as pd
    from sqlalchemy import create_engine
    yconnect = create_engine('mysql+mysqldb://root:@127.0.0.1:3306/jing?charset=utf8')  
    pd.io.sql.to_sql(DF,tablename, yconnect, schema='jing', if_exists='append')  

注意:获取一次sql对象就需要重新访问一下数据库(!!!)

# 读取数据库数据
engine = create_engine('mysql+pymysql://root:@127.0.0.1:3306/jing?charset=utf8')
sql = pd.read_sql('all_gzdata', engine, chunksize = 10000) # 由于数据量太大,使用chunksize进行控制分块进行

# 获取浏览一次的所有数据
f = counts1_[counts1_['realIP']==1]
del f[1]
f.columns = [u'点击次数']
f.index.name = 'realIP'
# g = [pd.merge(f,i[['fullURLId','fullURL','realIP']],right_on = 'realIP',left_index=True,how ='left') for i in sql]
g = [i[['fullURLId','fullURL','realIP']] for i in sql]
g = pd.concat(g)
h = pd.merge(f,g,right_on = 'realIP',left_index=True,how ='left')
h

Python操作数据库


import MySQLdb as msd # 注意py2.7是mysqldb,python3是pymysql
# connect()方法用于创建数据库的连接,里面可以指定参数:用户名、密码、主机等信息
conn = msd.connect(
    host = 'localhost',
    port = 3306,
    user = 'root',
    passwd = '',#数据库密码
    db = 'jing',# 数据库名
)
# 通过获取到的数据库连接conn下的cursor()方法来创建游标
cur = conn.cursor()

# 通过游标cur操作execute()方法可以写入纯sql语句,操作数据库
# 创建表
cur.execute('create table student(id int, name varchar(20), class varchar(20), age varchar(10))')

# 插入一条数据
cur.execute("insert into student values('2','gege','class 2 grade 3','20')")
cur.execute("insert into student values('2','bob','class 2 grade 5','21')")
# 修改查询条件的数据
cur.execute("update student set class = 'class 2 grade 5' where name='bob'")

# 删除查询条件的数据
cur.execute("delete from student where age='9'")
# cur.execute("drop table student3,student4,student5,student6")


cur.close() # 关闭游标
conn.commit() # 提交事务,向数据库插入数据时一定要加这句话,否则不会真正插入
conn.close()# 关闭数据库连接

你可能感兴趣的:(Python实用操作基础)