- Hadoop与云原生集成:弹性扩缩容与OSS存储分离架构深度解析
Hadoop与云原生集成的必要性Hadoop在大数据领域的基石地位作为大数据处理领域的奠基性技术,Hadoop自2006年诞生以来已形成包含HDFS、YARN、MapReduce三大核心组件的完整生态体系。根据CSDN技术社区的分析报告,全球超过75%的《财富》500强企业仍在使用Hadoop处理EB级数据,其分布式文件系统HDFS通过数据分片(默认128MB块大小)和三副本存储机制,成功解决了P
- GlusterFS 分布式文件系统详解
Sally璐璐
运维运维
一、核心特性高扩展性GlusterFS采用无共享架构,支持横向扩展,只需添加服务器节点即可提升存储容量和性能,理论上可达PB甚至EB级规模,且扩展过程对上层应用完全透明。例如,一个初始4节点、20TB的集群可无缝扩展至100节点、500TB规模,仅需执行简单扩容命令,无需中断服务或数据迁移。详细扩容步骤:准备新服务器并安装GlusterFS软件确保操作系统版本兼容安装glusterfs-serve
- HDFS 伪分布模式搭建与使用全攻略(适合初学者 & 开发测试环境)
huihui450
hdfshadoop大数据
HDFS(HadoopDistributedFileSystem)作为Hadoop生态系统的核心组件,广泛应用于海量数据的分布式存储场景。对于开发者而言,伪分布模式提供了一种低成本、高还原度的学习与测试方式。本文将详细介绍如何在本地搭建并使用HDFS的伪分布模式,包括环境准备、配置过程、常用命令及常见问题排查,帮助你快速入门Hadoop分布式文件系统的实践操作。一、什么是伪分布模式?Hadoop有
- HDFS中fsimage和edits究竟是什么
清平乐的技术博客
大数据运维hdfshadoop大数据
fsimage和edits是HadoopHDFS(Hadoop分布式文件系统)中的两个关键组件,用于存储文件系统的元数据,以确保文件系统的持久性和一致性。在理解它们的作用之前,我们先了解一下HDFS的基本工作原理。HDFS采用了一种分布式文件系统的架构,其中数据被划分成块并分布在不同的数据节点上,而元数据(文件和目录的信息)则由单独的组件进行管理。元数据的持久性和一致性非常重要,因为文件系统的正确
- 【Hadoop】Hadoop车辆数据存储
db_hjx_2066
javahadoop
Hadoop车辆数据存储本作业旨在实现将车辆数据按天存储到Hadoop分布式文件系统(HDFS)中,并根据数据文件大小分割成多个文件进行存储。数据格式为JSON。作业要求车辆数据按天存储,每天的数据存储在一个文件夹下。数据文件以JSON格式存储。如果数据文件大于100M,则另起一个文件存储。每天的数据总量不少于300M。实现方法1.代码说明以下是用Java编写的实现代码:1.导入类//导入必要的类
- 鸿蒙分布式文件系统开发完全指南
操作系统内核探秘
操作系统内核揭秘OSharmonyos华为ai
鸿蒙分布式文件系统开发完全指南关键词:鸿蒙系统、分布式文件系统、HarmonyOS、跨设备文件共享、文件管理、开发指南、系统架构摘要:本文将全面介绍鸿蒙分布式文件系统的核心概念、架构设计、开发方法和实际应用。我们将从基础概念入手,逐步深入探讨其技术原理,并通过实际代码示例展示如何开发基于鸿蒙分布式文件系统的应用。无论您是初学者还是有经验的开发者,都能从本文中获得实用的开发知识和技巧。背景介绍目的和
- HDFS与HBase有什么关系?
lucky_syq
hdfshbasehadoop
1、HDFS文件存储系统和HBase分布式数据库HDFS是Hadoop分布式文件系统。HBase的数据通常存储在HDFS上。HDFS为HBase提供了高可靠性的底层存储支持。Hbase是Hadoopdatabase,即Hadoop数据库。它是一个适合于非结构化数据存储的数据库,HBase基于列的而不是基于行的模式。
- 大数据基础知识-Hadoop、HBase、Hive一篇搞定
原来是猪猪呀
hadoop大数据分布式
HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构,其核心设计包括分布式文件系统(HDFS)和MapReduce编程模型;Hadoop是一个开源的分布式计算框架,旨在帮助用户在不了解分布式底层细节的情况下,开发分布式程序。它通过利用集群的力量,提供高速运算和存储能力,特别适合处理超大数据集的应用程序。Hadoop生态圈Hadoop生态圈是一个由多个基于Hadoop开发的相
- 从 TCP/IP 协议栈角度深入分析网络文件系统 (NFS)
一、引言:NFS与TCP/IP的关系概述网络文件系统(NetworkFileSystem,NFS)是一种分布式文件系统协议,允许客户端通过网络访问远程服务器上的文件系统,就像访问本地文件系统一样。NFS是SunMicrosystems在20世纪80年代开发的,旨在提供一种透明的、与平台无关的文件共享机制。从设计理念来看,NFS的核心目标是"消除本地文件和远程文件之间的区别",使用户能够像操作本地文
- HDFS(Hadoop分布式文件系统)总结
Cachel wood
大数据开发hadoophdfs大数据散列表算法哈希算法spark
文章目录一、HDFS概述1.定义与定位2.核心特点二、HDFS架构核心组件1.NameNode(名称节点)2.DataNode(数据节点)3.Client(客户端)4.SecondaryNameNode(辅助名称节点)三、数据存储机制1.数据块(Block)设计2.复制策略(默认复制因子=3)3.数据完整性校验四、文件读写流程1.写入流程2.读取流程五、高可用性(HA)机制1.单点故障解决方案2.
- Hadoop 发展过程是怎样的?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2003年,美国加州大学洛杉矶分校教授李彦宏博士发明了一种分布式文件系统——GFS(GoogleFileSystem)。由于该文件系统设计得足够简单,可以适应大规模数据集存储需求,在此基础上演化出多种应用,包括MapReduce、BigTable、PageRank等,并成为当时互联网公司的标配技术之一。2004年,Google发布了第一版Hadoop项目,定位是
- 【大数据】分布式文件系统算法
大雨淅淅
大数据大数据
目录一、分布式文件系统算法概述二、分布式文件系统算法分类三、分布式文件系统算法实现3.1分布式文件系统算法C语言实现3.2分布式文件系统算法JAVA实现四、分布式文件系统算法应用五、分布式文件系统算法发展趋势一、分布式文件系统算法概述分布式文件系统是一种允许通过网络将物理上分散存储的文件系统资源逻辑上集中管理的系统。它通过将文件数据分布在多个服务器上,提高了数据的可用性、可靠性和扩展性。二、分布式
- 从 0 到 Offer!大数据核心面试题全解析,答案精准拿捏面试官(hadoop篇)
浅谈星痕
大数据
1.什么是Hadoop?Hadoop是一个开源的分布式系统基础架构,用于存储和处理大规模数据集。它主要包含HDFS(HadoopDistributedFileSystem)分布式文件系统、MapReduce分布式计算框架以及YARN(YetAnotherResourceNegotiator)资源管理器。HDFS负责数据的分布式存储,将大文件分割成多个数据块存储在不同节点上;MapReduce用于分
- FastDFS 分布式存储系统深度解析与实践指南
昭阳~
分布式
一、FastDFS技术背景与核心定位在大数据与云计算技术高速发展的当下,企业面临着海量非结构化数据存储与管理的严峻挑战。像图片、视频、日志文件这类非结构化数据,其规模正以指数级速度增长,传统单机存储方案在容量、性能和可靠性等方面的局限性日益凸显,已无法满足高并发访问、高可用性保障和灵活横向扩展的需求。在此背景下,FastDFS作为一款开源的轻量级分布式文件系统应运而生,它凭借简洁高效的设计理念、出
- 剖析分布式文件存储系统 FastDFS
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介FastDFS是一个开源的高性能分布式文件系统,它对文件进行管理、存储、调度等操作。它支持文件的切片、同步加速、文件访问统计等功能。FastDFS客户端库对接语言包括C/C++,Java,PHP,Python,Ruby,Node.js,Go等。FastDFS存储集群可以部署在互联网、公司网络环境中,提供高可靠性和容灾能力。它设计了简单的设计理念和开发模式,非常容
- mount.lustre: /dev/sdc has not been formatted with mkfs.lustre or the backend filesystem type is not
计算机辅助工程
linux服务器运维
在Linux系统中,如果你尝试挂载一个Lustre文件系统,但遇到了/dev/sdchasnotbeenformattedwithmkfs.lustreorthebackend的错误信息,这通常意味着你的磁盘分区还没有被格式化为Lustre文件系统。Lustre是一个高性能的分布式文件系统,通常用于大规模并行计算环境中。要解决这个问题,你需要按照以下步骤操作:创建文件系统首先,你需要使用mkfs.
- 大数据基础——大数据处理架构Hadoop
皮皮大卫
大数据hadoop大数据
一、Hadoop是什么?(1)Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构(2)Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中(3)Hadoop的核心是分布式文件系统HDFS(HadoopDistributedFileSystem)和MapReduce(4)Hadoop被公认为行业大数据
- DataX HdfsReader 插件:快速上手与深入解析
Edingbrugh.南空
hive大数据hivehadoopsqletl
引言在数据处理与分析的领域中,数据的高效读取与传输是至关重要的环节。DataX作为一款强大的开源离线同步工具,为我们提供了便捷的数据同步解决方案。其中,HdfsReader插件专门用于从Hadoop分布式文件系统(HDFS)中读取数据,并且能够将其转换为DataX传输协议传递给Writer进行后续处理。本文将详细介绍DataXHdfsReader插件的使用方法,无论是新手小白还是经验丰富的高手,都
- GFS(Gluster)分布式文件系统
霖檬ing
运维
目录基本概念一、核心概念与技术特性二、架构组成与核心组件工作流程一、GlusterFS核心工作流程1.客户端挂载流程2.文件写入流程(以复制卷为例)3.文件读取流程二、关键后台进程三、故障处理流程四、性能优化设计优势一、无中心化架构二、极致横向扩展能力三、数据高可用机制四、协议兼容与生态集成五、成本与运维优势六、性能优化特性缺陷一、元数据架构缺陷⚡二、性能局限性
- 深度解析 JuiceFS 权限管理:Linux 多种安全机制全兼容
运维linux文件系统
在多用户和高安全性要求的系统中,文件与目录权限控制是实现资源隔离与系统安全的基础机制。Linux操作系统的文件权限模型提供了灵活强大的权限控制机制,通过对用户、组和其他用户的权限设置,确保系统资源的安全性和合规性。作为一款支持Linux系统的分布式文件系统,JuiceFS需要与Linux权限管理模型兼容,以实现一致的访问控制和数据安全。本文将深入探讨JuiceFS在实际应用中的权限管理实践,帮助用
- 史上最全Hadoop面试题(最新版)
zh_19995
hadoop面试
1、聊聊:Hadoop集群的最主要瓶颈Hadoop集群的最主要瓶颈可能包括以下几个方面:网络带宽:Hadoop集群中的数据通常需要在不同的节点之间传输,如果网络带宽不足,可能会导致数据传输速度变慢,从而影响整个集群的性能。存储性能:Hadoop集群通常使用分布式文件系统来存储数据,如果存储性能不足,可能会导致数据读写速度变慢,从而影响整个集群的性能。计算资源:Hadoop集群中的计算任务通常需要在
- Hadoop 十年:从谷歌论文到全球企业的标配技术
后端
Hadoop简介Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统(HadoopDistributedFileSystem)HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上;而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集
- Spring Boot 2.x :通过 spring-boot-starter-hbase 集成 HBase
weixin_43770982
javaSpring职场SpringBootjavajava程序员
本文内容HBase简介和应用场景spring-boot-starter-hbase开源简介集成HBase实战小结一、HBase简介和应用场景1.1HBase是什么?HBase是什么?HBase是在Hadoop分布式文件系统(简称:HDFS)之上的分布式面向列的数据库。而且是2007最初原型,历史悠久。那追根究底,Hadoop是什么?Hadoop是一个分布式环境存储并处理大数据。Hadoop使用Ma
- HarmonyOS Next 中的分布式数据管理:实现跨设备数据共享
北辰alk
鸿蒙harmonyos分布式华为
文章目录1.**分布式数据管理的核心概念**1.1什么是分布式数据管理?1.1.1分布式数据管理的特点1.2分布式数据管理的应用场景2.**分布式数据管理的实现原理**2.1分布式数据管理的架构2.2分布式数据库示例:使用分布式数据库2.3分布式文件系统示例:使用分布式文件系统2.4数据同步机制示例:使用数据同步机制3.**分布式数据管理的应用场景**3.1多设备协同示例:多设备文件共享3.2任务
- 【赵渝强老师】Hadoop生态圈组件
赵渝强老师
大数据技术hadoop大数据分布式
下图为大家展示了Hadoop生态圈体系中的主要组件以及它们彼此之间的关系。 视频讲解如下:Hadoop生态圈组件【赵渝强老师】Hadoop生态圈组件 这里先简单说明每一个组件的作用功能。一、HDFS 它的全称是HadoopDistributedFileSystem,它是Hadoop分布式文件系统
- Hadoop 大数据启蒙:初识 HDFS
北漂老男人
HDFShadoop大数据hdfs
Hadoop大数据启蒙:初识HDFS(含命令与架构详解)关键词:Hadoop、HDFS、分布式存储、NameNode、DataNode、大数据入门一、什么是HDFS?HDFS(HadoopDistributedFileSystem)是Hadoop生态中最核心的组件之一,是为大规模数据存储和高吞吐量数据访问而设计的分布式文件系统。它允许用户将超大文件存储在由普通硬件组成的集群上,具备高容错、横向扩展
- 大数据处理框架:从 Hadoop 到 Spark 的深度对比与实战
数字魔方操控师
hadoopspark大数据
一、引言在大数据时代,高效处理海量数据成为关键。Hadoop和Spark作为两个经典的大数据处理框架,各自有着独特的优势和应用场景。深入了解它们的差异,并通过实战掌握其使用方法,对于大数据开发者和分析师至关重要。二、架构对比(一)Hadoop架构Hadoop采用主从架构,核心组件为HDFS(分布式文件系统)和MapReduce计算模型。HDFS负责数据存储,将大文件分割成多个数据块存储在不同节点上
- Linux 网络文件系统 NFS:配置与管理指南
aini_lovee
linux网络php
网络文件系统(NetworkFileSystem,NFS)是一种分布式文件系统协议,允许不同计算机系统之间通过网络共享文件和目录。NFS是Unix和Linux环境中常用的文件共享解决方案之一。本文将详细介绍如何在Linux系统中配置和管理NFS。一、NFS基本概念1.什么是NFSNFS是由SunMicrosystems开发的分布式文件系统协议,通过网络让多台计算机可以共享文件和目录。NFS允许客户
- Hive实战讲解-1
数字化与智能化
Hive数据仓库hive
Hive是基于Hadoop的一个数据仓库工具,它构建在HDFS(Hadoop分布式文件系统)之上,提供了类SQL的查询语言HiveQL,允许用户以类似操作关系型数据库的方式处理和分析大规模数据集,将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,从而让不熟悉MapReduce编程的分析师和数据科学家也能高效处理数据。Hive具备显著特点:其一,它拥有强大的可扩展性,基于Hadoop
- Hadoop中HDFS、Hive 和 HBase三者之间的关系
[听得时光枕水眠]
hadoophdfshive
HDFS(HadoopDistributedFileSystem)、Hive和HBase是Hadoop生态系统中三个重要的组件,它们各自解决了大数据存储和处理的不同层面的问题。我们用大白话来解释这三个组件之间的关系:HDFS-数据的仓库:HDFS是一个分布式文件系统,就像是一个巨大的仓库,专门用来存储海量的数据。它把数据分成很多小块,分布在集群中的许多服务器上,这样即使数据量非常大,也能快速访问和
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,