【成神之路】Dubbo&Zookeeper相关面试题

什么是Dubbo

dubbo是一个分布式框架,远程服务调用的分布式框架,其核心部分包含:
集群容错:提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。
远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。
自动发现:基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。

什么是RPC、如何实现RPC、RPC 的实现原理

https://blog.csdn.net/w372426096/article/details/88352833

dubbo能做什么

透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。

软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。

服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。

Dubbo的工作原理?注册中心挂了可以继续通信吗?说说一次rpc请求的流程?

https://www.cnblogs.com/daiwei1981/p/9412978.html

https://mp.weixin.qq.com/s?__biz=MzI1NDQ3MjQxNA==&mid=2247483791&idx=1&sn=49345f1a022734e81e9257f2b8d38a52&chksm=e9c5f83edeb2712805a77c1e1589e8f1d04bd17e55eeb2a45cabddb46d03615636908f058628&scene=21#wechat_redirect

Dubbo完整的一次调用链路介绍;

【成神之路】Dubbo&Zookeeper相关面试题_第1张图片

这是常有的调用方式,不同的RPC框架不过在这种调用方式上做了一些自己的特殊处理

  1. 客户端以本地服务方式调用服务
  2. client stub作为代理,然后处理调用与调用的参数
  3. client stub发送调用到远端的系统,通过TCP或UDP
  4. server stub处理client stub发过来的调用与参数
  5. server stub调用真正提高的服务
  6. server stub处理回复,然后发送给客户端

RPC调用一般会设计代理相关的内容

参考:RPC原理及Dubbo入门

Dubbo支持哪些通信协议;

1)dubbo协议

dubbo://192.168.0.1:20188

默认就是走dubbo协议的,单一长连接,NIO异步通信,基于hessian作为序列化协议

适用的场景就是:传输数据量很小(每次请求在100kb以内),但是并发量很高

为了要支持高并发场景,一般是服务提供者就几台机器,但是服务消费者有上百台,可能每天调用量达到上亿次!此时用长连接是最合适的,就是跟每个服务消费者维持一个长连接就可以,可能总共就100个连接。然后后面直接基于长连接NIO异步通信,可以支撑高并发请求。

否则如果上亿次请求每次都是短连接的话,服务提供者会扛不住。

而且因为走的是单一长连接,所以传输数据量太大的话,会导致并发能力降低。所以一般建议是传输数据量很小,支撑高并发访问。

2)rmi协议

走java二进制序列化,多个短连接,适合消费者和提供者数量差不多,适用于文件的传输,一般较少用

3)hessian协议

走hessian序列化协议,多个短连接,适用于提供者数量比消费者数量还多,适用于文件的传输,一般较少用

4)http协议

走json序列化

5)webservice

走SOAP文本序列化

【成神之路】Dubbo&Zookeeper相关面试题_第2张图片

默认使用什么序列化框架,你知道的还有哪些?

默认使用 Hessian 序列化,还有 Duddo、FastJson、Java 自带序列化。
hessian是一个采用二进制格式传输的服务框架,相对传统soap web service,更轻量,更快速。

Hessian原理与协议简析:

http的协议约定了数据传输的方式,hessian也无法改变太多:

1) hessian中client与server的交互,基于http-post方式。

2) hessian将辅助信息,封装在http header中,比如“授权token”等,我们可以基于http-header来封装关于“安全校验”“meta数据”等。hessian提供了简单的”校验”机制。

3) 对于hessian的交互核心数据,比如“调用的方法”和参数列表信息,将通过post请求的body体直接发送,格式为字节流。

4) 对于hessian的server端响应数据,将在response中通过字节流的方式直接输出。

hessian的协议本身并不复杂,在此不再赘言;所谓协议(protocol)就是约束数据的格式,client按照协议将请求信息序列化成字节序列发送给server端,server端根据协议,将数据反序列化成“对象”,然后执行指定的方法,并将方法的返回值再次按照协议序列化成字节流,响应给client,client按照协议将字节流反序列话成”对象”。

Dubbo 集群的负载均衡有哪些策略  

1)random loadbalance

默认情况下,dubbo是random load balance随机调用实现负载均衡,可以对provider不同实例设置不同的权重,会按照权重来负载均衡,权重越大分配流量越高,一般就用这个默认的就可以了。

2)roundrobin loadbalance

还有roundrobin loadbalance,这个的话默认就是均匀地将流量打到各个机器上去,但是如果各个机器的性能不一样,容易导致性能差的机器负载过高。所以此时需要调整权重,让性能差的机器承载权重小一些,流量少一些。

跟运维同学申请机器,有的时候,我们运气,正好公司资源比较充足,刚刚有一批热气腾腾,刚刚做好的一批虚拟机新鲜出炉,配置都比较高。8核+16g,机器,2台。过了一段时间,我感觉2台机器有点不太够,我去找运维同学,哥儿们,你能不能再给我1台机器,4核+8G的机器。我还是得要。

3)leastactive loadbalance

这个就是自动感知一下,如果某个机器性能越差,那么接收的请求越少,越不活跃,此时就会给不活跃的性能差的机器更少的请求

4)consistanthash loadbalance

一致性Hash算法,相同参数的请求一定分发到一个provider上去,provider挂掉的时候,会基于虚拟节点均匀分配剩余的流量,抖动不会太大。如果你需要的不是随机负载均衡,是要一类请求都到一个节点,那就走这个一致性hash策略。

【成神之路】Dubbo&Zookeeper相关面试题_第3张图片

Dubbo集群容错怎么做?

1)failover cluster模式

失败自动切换,自动重试其他机器,默认就是这个,常见于读操作

2)failfast cluster模式

一次调用失败就立即失败,常见于写操作

3)failsafe cluster模式

出现异常时忽略掉,常用于不重要的接口调用,比如记录日志

4)failbackc cluster模式

失败了后台自动记录请求,然后定时重发,比较适合于写消息队列这种

5)forking cluster

并行调用多个provider,只要一个成功就立即返回

6)broadcacst cluster

逐个调用所有的provider

(3)dubbo动态代理策略

默认使用javassist动态字节码生成,创建代理类

但是可以通过spi扩展机制配置自己的动态代理策略

Dubbo中的SPI是什么概念

https://www.cnblogs.com/daiwei1981/p/9413031.html

如何基于dubbo进行服务治理、服务降级、失败重试以及超时重试?

(1)服务治理

1)调用链路自动生成

一个大型的分布式系统,或者说是用现在流行的微服务架构来说吧,分布式系统由大量的服务组成。那么这些服务之间互相是如何调用的?调用链路是啥?说实话,几乎到后面没人搞的清楚了,因为服务实在太多了,可能几百个甚至几千个服务。

那就需要基于dubbo做的分布式系统中,对各个服务之间的调用自动记录下来,然后自动将各个服务之间的依赖关系和调用链路生成出来,做成一张图,显示出来,大家才可以看到对吧。

服务A -> 服务B -> 服务C

               -> 服务E

      -> 服务D

               -> 服务F

     -> 服务W

2)服务访问压力以及时长统计

需要自动统计各个接口和服务之间的调用次数以及访问延时,而且要分成两个级别。一个级别是接口粒度,就是每个服务的每个接口每天被调用多少次,TP50,TP90,TP99,三个档次的请求延时分别是多少;第二个级别是从源头入口开始,一个完整的请求链路经过几十个服务之后,完成一次请求,每天全链路走多少次,全链路请求延时的TP50,TP90,TP99,分别是多少。

这些东西都搞定了之后,后面才可以来看当前系统的压力主要在哪里,如何来扩容和优化啊

3)其他的

服务分层(避免循环依赖),调用链路失败监控和报警,服务鉴权,每个服务的可用性的监控(接口调用成功率?几个9?)99.99%,99.9%,99%

(2)服务降级

比如说服务A调用服务B,结果服务B挂掉了,服务A重试几次调用服务B,还是不行,直接降级,走一个备用的逻辑,给用户返回响应

public interface HelloService {

   void sayHello();

}

public class HelloServiceImpl implements HelloService {

    public void sayHello() {

        System.out.println("hello world......");

    }

}

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dubbo="http://code.alibabatech.com/schema/dubbo"

    xsi:schemaLocation="http://www.springframework.org/schema/beans        http://www.springframework.org/schema/beans/spring-beans.xsd        http://code.alibabatech.com/schema/dubbo        http://code.alibabatech.com/schema/dubbo/dubbo.xsd">

    

    

    

    

    

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:dubbo="http://code.alibabatech.com/schema/dubbo"

    xsi:schemaLocation="http://www.springframework.org/schema/beans        http://www.springframework.org/schema/beans/spring-beans.xsd        http://code.alibabatech.com/schema/dubbo        http://code.alibabatech.com/schema/dubbo/dubbo.xsd">

    

    

    

    

现在就是mock,如果调用失败统一返回null

但是可以将mock修改为true,然后在跟接口同一个路径下实现一个Mock类,命名规则是接口名称加Mock后缀。然后在Mock类里实现自己的降级逻辑。

public class HelloServiceMock implements HelloService {

public void sayHello() {

// 降级逻辑

}

}

(3)失败重试和超时重试

所谓失败重试,就是consumer调用provider要是失败了,比如抛异常了,此时应该是可以重试的,或者调用超时了也可以重试。

某个服务的接口,要耗费5s,你这边不能干等着,你这边配置了timeout之后,我等待2s,还没返回,我直接就撤了,不能干等你

如果是超时了,timeout就会设置超时时间;如果是调用失败了自动就会重试指定的次数

你就结合你们公司的具体的场景来说说你是怎么设置这些参数的,timeout,一般设置为200ms,我们认为不能超过200ms还没返回

retries,3次,设置retries,还一般是在读请求的时候,比如你要查询个数据,你可以设置个retries,如果第一次没读到,报错,重试指定的次数,尝试再次读取2次

分布式服务接口请求的顺序性如何保证?

https://www.cnblogs.com/daiwei1981/p/9413058.html

如何自己设计一个类似dubbo的rpc框架?

https://blog.csdn.net/w372426096/article/details/88352833

(1)上来你的服务就得去注册中心注册吧,你是不是得有个注册中心,保留各个服务的信心,可以用zookeeper来做,对吧

(2)然后你的消费者需要去注册中心拿对应的服务信息吧,对吧,而且每个服务可能会存在于多台机器上

(3)接着你就该发起一次请求了,咋发起?蒙圈了是吧。当然是基于动态代理了,你面向接口获取到一个动态代理,这个动态代理就是接口在本地的一个代理,然后这个代理会找到服务对应的机器地址

(4)然后找哪个机器发送请求?那肯定得有个负载均衡算法了,比如最简单的可以随机轮询是不是

(5)接着找到一台机器,就可以跟他发送请求了,第一个问题咋发送?你可以说用netty了,nio方式;第二个问题发送啥格式数据?你可以说用hessian序列化协议了,或者是别的,对吧。然后请求过去了。。

(6)服务器那边一样的,需要针对你自己的服务生成一个动态代理,监听某个网络端口了,然后代理你本地的服务代码。接收到请求的时候,就调用对应的服务代码,对吧。

Dubbo如果有一个服务挂掉了怎么办;

默认使用的是什么通信框架,还有别的选择吗?

默认也推荐使用 netty 框架,还有 mina。

https://www.cnblogs.com/songxh-scse/p/6692301.html

https://blog.csdn.net/youanyyou/article/details/78990214

服务调用是阻塞的吗?

默认是阻塞的,可以异步调用,没有返回值的可以这么做。

https://my.oschina.net/yaohonv/blog/1606807

一般使用什么注册中心?还有别的选择吗?

推荐使用 zookeeper 注册中心,还有 Multicast注册中心, Redis注册中心, Simple注册中心.

ZooKeeper的节点是通过像树一样的结构来进行维护的,并且每一个节点通过路径来标示以及访问。除此之外,每一个节点还拥有自身的一些信息,包括:数据、数据长度、创建时间、修改时间等等。

服务提供者能实现失效踢出是什么原理?

服务失效踢出基于 zookeeper 的临时节点原理。

https://www.jianshu.com/p/f42c69e4bd3e?fromApp=1

服务上线怎么不影响旧版本?

采用多版本开发,不影响旧版本。在配置中添加version来作为版本区分

https://blog.csdn.net/whereismatrix/article/details/53784464

如何解决服务调用链过长的问题?

可以结合 zipkin 实现分布式服务追踪。

https://blog.csdn.net/liaokailin/article/details/52077620

说说核心的配置有哪些?

核心配置有

dubbo:service/

dubbo:reference/

dubbo:protocol/

dubbo:registry/

dubbo:application/

dubbo:provider/

dubbo:consumer/

dubbo:method/

dubbo 推荐用什么协议?

默认使用dubbo协议。

https://blog.csdn.net/zh521zh/article/details/76445520

同一个服务多个注册的情况下可以直连某一个服务吗?

可以直连,修改配置即可,也可以通过 telnet 直接某个服务。

画一画服务注册与发现的流程图  

dubbo 在安全机制方面如何解决的?

dubbo 通过 token 令牌防止用户绕过注册中心直连,然后在注册中心管理授权,dubbo 提供了黑白名单,控制服务所允许的调用方。

在使用过程中都遇到了些什么问题? 如何解决的?

1. 同时配置了 XML 和 properties 文件,则 properties 中的配置无效

只有 XML 没有配置时,properties 才生效。

2.dubbo 缺省会在启动时检查依赖是否可用,不可用就抛出异常,阻止 spring 初始化完成,check 属性默认为 true。

测试时有些服务不关心或者出现了循环依赖,将 check 设置为 false

3. 为了方便开发测试,线下有一个所有服务可用的注册中心,这时,如果有一个正在开发中的服务提供者注册,可能会影响消费者不能正常运行。

解决:让服务提供者开发方,只订阅服务,而不注册正在开发的服务,通过直连测试正在开发的服务。设置 dubbo:registry 标签的 register 属性为 false。

4.spring 2.x 初始化死锁问题。

在 spring 解析到 dubbo:service 时,就已经向外暴露了服务,而 spring 还在接着初始化其他 bean,如果这时有请求进来,并且服务的实现类里有调用 applicationContext.getBean() 的用法。getBean 线程和 spring 初始化线程的锁的顺序不一样,导致了线程死锁,不能提供服务,启动不了。

解决:不要在服务的实现类中使用 applicationContext.getBean(); 如果不想依赖配置顺序,可以将 dubbo:provider 的 deplay 属性设置为 - 1,使 dubbo 在容器初始化完成后再暴露服务。

5. 服务注册不上

检查 dubbo 的 jar 包有没有在 classpath 中,以及有没有重复的 jar 包

检查暴露服务的 spring 配置有没有加载

在服务提供者机器上测试与注册中心的网络是否通

6. 出现 RpcException: No provider available for remote service 异常

表示没有可用的服务提供者,

1). 检查连接的注册中心是否正确

2). 到注册中心查看相应的服务提供者是否存在

3). 检查服务提供者是否正常运行

7. 出现” 消息发送失败” 异常

通常是接口方法的传入传出参数未实现 Serializable 接口。

dubbo 和 dubbox 之间的区别?

dubbox 是当当网基于 dubbo 上做了一些扩展,如加了服务可 restful 调用,更新了开源组件等。

你还了解别的分布式框架吗?

别的还有 spring 的 spring cloud,facebook 的 thrift,twitter 的 finagle 等。

Dubbo 支持哪些协议,每种协议的应用场景,优缺点?

dubbo: 单一长连接和 NIO 异步通讯,适合大并发小数据量的服务调用,以及消费者远大于提供者。传输协议 TCP,异步,Hessian 序列化;

rmi: 采用 JDK 标准的 rmi 协议实现,传输参数和返回参数对象需要实现 Serializable 接口,使用 java 标准序列化机制,使用阻塞式短连接,传输数据包大小混合,消费者和提供者个数差不多,可传文件,传输协议 TCP。 多个短连接,TCP 协议传输,同步传输,适用常规的远程服务调用和 rmi 互操作。在依赖低版本的 Common-Collections 包,java 序列化存在安全漏洞;

webservice: 基于 WebService 的远程调用协议,集成 CXF 实现,提供和原生 WebService 的互操作。多个短连接,基于 HTTP 传输,同步传输,适用系统集成和跨语言调用;http: 基于 Http 表单提交的远程调用协议,使用 Spring 的 HttpInvoke 实现。多个短连接,传输协议 HTTP,传入参数大小混合,提供者个数多于消费者,需要给应用程序和浏览器 JS 调用;

hessian: 集成 Hessian 服务,基于 HTTP 通讯,采用 Servlet 暴露服务,Dubbo 内嵌 Jetty 作为服务器时默认实现,提供与 Hession 服务互操作。多个短连接,同步 HTTP 传输,Hessian 序列化,传入参数较大,提供者大于消费者,提供者压力较大,可传文件;

memcache: 基于 memcached 实现的 RPC 协议

redis: 基于 redis 实现的 RPC 协议

 服务调用超时问题怎么解决

dubbo在调用服务不成功时,默认是会重试两次的。这样在服务端的处理时间超过了设定的超时时间时,就会有重复请求,比如在发邮件时,可能就会发出多份重复邮件,执行注册请求时,就会插入多条重复的注册数据,那么怎么解决超时问题呢?如下

对于核心的服务中心,去除dubbo超时重试机制,并重新评估设置超时时间。

业务处理代码必须放在服务端,客户端只做参数验证和服务调用,不涉及业务流程处理
全局配置实例

当然Dubbo的重试机制其实是非常好的QOS保证,它的路由机制,是会帮你把超时的请求路由到其他机器上,而不是本机尝试,所以 dubbo的重试机器也能一定程度的保证服务的质量。但是请一定要综合线上的访问情况,给出综合的评估。
Dubbo Provider服务提供者要控制执行并发请求上限,具体怎么做?

在Provider配置的Consumer端属性:actives,消费者端,最大并发调用限制,即当Consumer对一个服务的并发调用到上限后,新调用会Wait直到超时

Provider上配置的Provider端属性: executes,一个服务提供者并行执行请求上限,即当Provider对一个服务的并发调用到上限后,新调用会Wait(Consumer可能到超时)。在方法上配置(dubbo:method )则并发限制针对方法,在接口上配置(dubbo:service),则并发限制针对服务。

参考:Dubbo的原理以及详细原理、配置
Dubbo启动的时候支持几种配置方式?

根据 DUBBO 官方文档,配置 DUBBO 有 4 种方式,分别是:

  • XML 配置文件方式
  • properties 配置文件方式
  • annotation 配置方式
  • API 配置方式

注册中心你了解了哪些?

zookeeper 和 eureka

Zookeeper 保证 CP

Zookeeper 是保证数据的一致性的,但是并不是强一致的。

比如客户端 A 提交一个写操作,Zookeeper 在过半数节点操作成功之后就可以返回,但此时,客户端 B 的读操作请求的是 A 写操作尚未同步到的节点,那么读取的就不是 A 最新提交的数据了。
我们可以在读取数据的时候先执行一下 sync 操作,即与 leader 节点先同步一下数据,再去取,这样才能保证数据的强一致性。

关于可用性,Zookeeper 的 master 节点因为网络故障与其他节点失去联系时,剩余节点会重新进行 leader 选举,选举 leader 的时间太长,需要 30 ~ 120 s, 且选举期间整个 Zookeeper 集群都是不可用的,这就导致在选举期间注册服务瘫痪。同时,在云部署的环境下,因网络问题使得 Zookeeper 集群失去 master 节点是较大概率会发生的事,整个服务停下这么长的时间是非常严重的,比如双十一。
Eureka 保证 AP

就是针对 Zookeeper 出现的这一问题,Eureka选择了优先保证可用性。

大规模网络部署时,失败是在所难免的。当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接 down 掉不可用。而集群部署的 Eureka 即使挂掉一定的数量,也可以保证有信息可以返回,依然可以提供注册和查询服务,只不过查到的信息可能不是最新的。

ribbon 提供了负载均衡和重试机制。

zookeeper满足了CAP的哪些特性,paxos

ZooKeeper从以下几点保证了数据的一致性

顺序一致性:来自任意特定客户端的更新都会按其发送顺序被提交保持一致。也就是说,如果一个客户端将Znode z的值更新为a,在之后的操作中,它又将z的值更新为b,则没有客户端能够在看到z的值是b之后再看到值a(如果没有其他对z的更新)。

原子性:每个更新要么成功,要么失败。这意味着如果一个更新失败,则不会有客户端会看到这个更新的结果。

单一系统映像:一个客户端无论连接到哪一台服务器,它看到的都是同样的系统视图。这意味着,如果一个客户端在同一个会话中连接到一台新的服务器,它所看到的系统状态不会比 在之前服务器上所看到的更老。当一台服务器出现故障,导致它的一个客户端需要尝试连接集合体中其他的服务器时,所有滞后于故障服务器的服务器都不会接受该 连接请求,除非这些服务器赶上故障服务器。

持久性:一个更新一旦成功,其结果就会持久存在并且不会被撤销。这表明更新不会受到服务器故障的影响。

实时性:在特定的一段时间内,客户端看到的系统需要被保证是实时的(在十几秒的时间里)。在此时间段内,任何系统的改变将被客户端看到,或者被客户端侦测到。

CAP理论告诉我们,一个分布式系统不可能同时满足以下三种

    一致性(C:Consistency)
    可用性(A:Available)
    分区容错性(P:Partition Tolerance)

这三个基本需求,最多只能同时满足其中的两项,因为P是必须的,因此往往选择就在CP或者AP中。

在此ZooKeeper保证的是CP

分析:可用性(A:Available)

不能保证每次服务请求的可用性。任何时刻对ZooKeeper的访问请求能得到一致的数据结果,同时系统对网络分割具备容错性;但是它不能保证每次服务请求的可用性(注:也就是在极端环境下,ZooKeeper可能会丢弃一些请求,消费者程序需要重新请求才能获得结果)。所以说,ZooKeeper不能保证服务可用性。

进行leader选举时集群都是不可用。在使用ZooKeeper获取服务列表时,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30 ~ 120s, 且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。所以说,ZooKeeper不能保证服务可用性。

zk都有哪些使用场景?

https://www.cnblogs.com/daiwei1981/p/9413076.html

zookeeper的实现机制,有缓存,如何存储注册服务的

https://www.cnblogs.com/felixzh/p/5869212.html

https://juejin.im/entry/5bf378e5f265da615f76e1ee
zookeeper的事务,结点,服务提供方挂了如何告知消费方

对接点有session监听,节点挂了有心跳检测;会通知相应注册的监听;服务器增加或减少会通知到注册中心,再通知到消费者。

zookeeper分布式锁

【成神之路】Dubbo&Zookeeper相关面试题_第4张图片

  • 依赖于临时顺序节点
  • 判断当前client的顺序号是否是最小的,如果是获取到锁。
  • 没有获取到锁的节点监听最小节点的删除事件(比如lock_key_001)
  • 锁释放,最小节点删除,剩余节点重新开始获取锁。
  • 重复步骤二到四。

https://blog.csdn.net/koflance/article/details/78616206
Zookeeper选举算法

Leader选举是保证分布式数据一致性的关键所在。当Zookeeper集群中的一台服务器出现以下两种情况之一时,需要进入Leader选举。

(1) 服务器初始化启动。

(2) 服务器运行期间无法和Leader保持连接。

下面就两种情况进行分析讲解。

1、服务器启动时期的Leader选举

若进行Leader选举,则至少需要两台机器,这里选取3台机器组成的服务器集群为例。在集群初始化阶段,当有一台服务器Server1启动时,其单独无法进行和完成Leader选举,当第二台服务器Server2启动时,此时两台机器可以相互通信,每台机器都试图找到Leader,于是进入Leader选举过程。选举过程如下

(1) 每个Server发出一个投票。由于是初始情况,Server1和Server2都会将自己作为Leader服务器来进行投票,每次投票会包含所推举的服务器的myid和ZXID,使用(myid, ZXID)来表示,此时Server1的投票为(1, 0),Server2的投票为(2, 0),然后各自将这个投票发给集群中其他机器。

(2) 接受来自各个服务器的投票。集群的每个服务器收到投票后,首先判断该投票的有效性,如检查是否是本轮投票、是否来自LOOKING状态的服务器。

(3) 处理投票。针对每一个投票,服务器都需要将别人的投票和自己的投票进行PK,PK规则如下

· 优先检查ZXID。ZXID比较大的服务器优先作为Leader。

· 如果ZXID相同,那么就比较myid。myid较大的服务器作为Leader服务器。

对于Server1而言,它的投票是(1, 0),接收Server2的投票为(2, 0),首先会比较两者的ZXID,均为0,再比较myid,此时Server2的myid最大,于是更新自己的投票为(2, 0),然后重新投票,对于Server2而言,其无须更新自己的投票,只是再次向集群中所有机器发出上一次投票信息即可。

(4) 统计投票。每次投票后,服务器都会统计投票信息,判断是否已经有过半机器接受到相同的投票信息,对于Server1、Server2而言,都统计出集群中已经有两台机器接受了(2, 0)的投票信息,此时便认为已经选出了Leader。

(5) 改变服务器状态。一旦确定了Leader,每个服务器就会更新自己的状态,如果是Follower,那么就变更为FOLLOWING,如果是Leader,就变更为LEADING。

2、服务器运行时期的Leader选举

在Zookeeper运行期间,Leader与非Leader服务器各司其职,即便当有非Leader服务器宕机或新加入,此时也不会影响Leader,但是一旦Leader服务器挂了,那么整个集群将暂停对外服务,进入新一轮Leader选举,其过程和启动时期的Leader选举过程基本一致。假设正在运行的有Server1、Server2、Server3三台服务器,当前Leader是Server2,若某一时刻Leader挂了,此时便开始Leader选举。选举过程如下

(1) 变更状态。Leader挂后,余下的非Observer服务器都会将自己的服务器状态变更为LOOKING,然后开始进入Leader选举过程。

(2) 每个Server会发出一个投票。在运行期间,每个服务器上的ZXID可能不同,此时假定Server1的ZXID为123,Server3的ZXID为122;在第一轮投票中,Server1和Server3都会投自己,产生投票(1, 123),(3, 122),然后各自将投票发送给集群中所有机器。

(3) 接收来自各个服务器的投票。与启动时过程相同。

(4) 处理投票。与启动时过程相同,此时,Server1将会成为Leader。

(5) 统计投票。与启动时过程相同。

(6) 改变服务器的状态。与启动时过程相同。

Leader选举算法分析

在3.4.0后的Zookeeper的版本只保留了TCP版本的FastLeaderElection选举算法。当一台机器进入Leader选举时,当前集群可能会处于以下两种状态

· 集群中已经存在Leader。

· 集群中不存在Leader。

对于集群中已经存在Leader而言,此种情况一般都是某台机器启动得较晚,在其启动之前,集群已经在正常工作,对这种情况,该机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器而言,仅仅需要和Leader机器建立起连接,并进行状态同步即可。而在集群中不存在Leader情况下则会相对复杂,其步骤如下

(1) 第一次投票。无论哪种导致进行Leader选举,集群的所有机器都处于试图选举出一个Leader的状态,即LOOKING状态,LOOKING机器会向所有其他机器发送消息,该消息称为投票。投票中包含了SID(服务器的唯一标识)和ZXID(事务ID),(SID, ZXID)形式来标识一次投票信息。假定Zookeeper由5台机器组成,SID分别为1、2、3、4、5,ZXID分别为9、9、9、8、8,并且此时SID为2的机器是Leader机器,某一时刻,1、2所在机器出现故障,因此集群开始进行Leader选举。在第一次投票时,每台机器都会将自己作为投票对象,于是SID为3、4、5的机器投票情况分别为(3, 9),(4, 8), (5, 8)。

(2) 变更投票。每台机器发出投票后,也会收到其他机器的投票,每台机器会根据一定规则来处理收到的其他机器的投票,并以此来决定是否需要变更自己的投票,这个规则也是整个Leader选举算法的核心所在,其中术语描述如下

· vote_sid:接收到的投票中所推举Leader服务器的SID。

· vote_zxid:接收到的投票中所推举Leader服务器的ZXID。

· self_sid:当前服务器自己的SID。

· self_zxid:当前服务器自己的ZXID。

每次对收到的投票的处理,都是对(vote_sid, vote_zxid)和(self_sid, self_zxid)对比的过程。

规则一:如果vote_zxid大于self_zxid,就认可当前收到的投票,并再次将该投票发送出去。

规则二:如果vote_zxid小于self_zxid,那么坚持自己的投票,不做任何变更。

规则三:如果vote_zxid等于self_zxid,那么就对比两者的SID,如果vote_sid大于self_sid,那么就认可当前收到的投票,并再次将该投票发送出去。

规则四:如果vote_zxid等于self_zxid,并且vote_sid小于self_sid,那么坚持自己的投票,不做任何变更。

结合上面规则,给出下面的集群变更过程。

【成神之路】Dubbo&Zookeeper相关面试题_第5张图片

(3) 确定Leader。经过第二轮投票后,集群中的每台机器都会再次接收到其他机器的投票,然后开始统计投票,如果一台机器收到了超过半数的相同投票,那么这个投票对应的SID机器即为Leader。此时Server3将成为Leader。

由上面规则可知,通常那台服务器上的数据越新(ZXID会越大),其成为Leader的可能性越大,也就越能够保证数据的恢复。如果ZXID相同,则SID越大机会越大。

Leader选举实现细节

1、服务器状态

服务器具有四种状态,分别是LOOKING、FOLLOWING、LEADING、OBSERVING。

LOOKING:寻找Leader状态。当服务器处于该状态时,它会认为当前集群中没有Leader,因此需要进入Leader选举状态。

FOLLOWING:跟随者状态。表明当前服务器角色是Follower。

LEADING:领导者状态。表明当前服务器角色是Leader。

OBSERVING:观察者状态。表明当前服务器角色是Observer。

2、投票数据结构

每个投票中包含了两个最基本的信息,所推举服务器的SID和ZXID,投票(Vote)在Zookeeper中包含字段如下

id:被推举的Leader的SID。

zxid:被推举的Leader事务ID。

electionEpoch:逻辑时钟,用来判断多个投票是否在同一轮选举周期中,该值在服务端是一个自增序列,每次进入新一轮的投票后,都会对该值进行加1操作。

peerEpoch:被推举的Leader的epoch。

state:当前服务器的状态。

3、QuorumCnxManager:网络I/O

每台服务器在启动的过程中,会启动一个QuorumPeerManager,负责各台服务器之间的底层Leader选举过程中的网络通信。

(1) 消息队列。QuorumCnxManager内部维护了一系列的队列,用来保存接收到的、待发送的消息以及消息的发送器,除接收队列以外,其他队列都按照SID分组形成队列集合,如一个集群中除了自身还有3台机器,那么就会为这3台机器分别创建一个发送队列,互不干扰。

· recvQueue:消息接收队列,用于存放那些从其他服务器接收到的消息。

· queueSendMap:消息发送队列,用于保存那些待发送的消息,按照SID进行分组。

· senderWorkerMap:发送器集合,每个SenderWorker消息发送器,都对应一台远程Zookeeper服务器,负责消息的发送,也按照SID进行分组。

· lastMessageSent:最近发送过的消息,为每个SID保留最近发送过的一个消息。

(2) 建立连接。为了能够相互投票,Zookeeper集群中的所有机器都需要两两建立起网络连接。QuorumCnxManager在启动时会创建一个ServerSocket来监听Leader选举的通信端口(默认为3888)。开启监听后,Zookeeper能够不断地接收到来自其他服务器的创建连接请求,在接收到其他服务器的TCP连接请求时,会进行处理。为了避免两台机器之间重复地创建TCP连接,Zookeeper只允许SID大的服务器主动和其他机器建立连接,否则断开连接。在接收到创建连接请求后,服务器通过对比自己和远程服务器的SID值来判断是否接收连接请求,如果当前服务器发现自己的SID更大,那么会断开当前连接,然后自己主动和远程服务器建立连接。一旦连接建立,就会根据远程服务器的SID来创建相应的消息发送器SendWorker和消息接收器RecvWorker,并启动。

(3) 消息接收与发送。消息接收:由消息接收器RecvWorker负责,由于Zookeeper为每个远程服务器都分配一个单独的RecvWorker,因此,每个RecvWorker只需要不断地从这个TCP连接中读取消息,并将其保存到recvQueue队列中。消息发送:由于Zookeeper为每个远程服务器都分配一个单独的SendWorker,因此,每个SendWorker只需要不断地从对应的消息发送队列中获取出一个消息发送即可,同时将这个消息放入lastMessageSent中。在SendWorker中,一旦Zookeeper发现针对当前服务器的消息发送队列为空,那么此时需要从lastMessageSent中取出一个最近发送过的消息来进行再次发送,这是为了解决接收方在消息接收前或者接收到消息后服务器挂了,导致消息尚未被正确处理。同时,Zookeeper能够保证接收方在处理消息时,会对重复消息进行正确的处理。

4、FastLeaderElection:选举算法核心

· 外部投票:特指其他服务器发来的投票。

· 内部投票:服务器自身当前的投票。

· 选举轮次:Zookeeper服务器Leader选举的轮次,即logicalclock。

· PK:对内部投票和外部投票进行对比来确定是否需要变更内部投票。

(1) 选票管理

· sendqueue:选票发送队列,用于保存待发送的选票。

· recvqueue:选票接收队列,用于保存接收到的外部投票。

· WorkerReceiver:选票接收器。其会不断地从QuorumCnxManager中获取其他服务器发来的选举消息,并将其转换成一个选票,然后保存到recvqueue中,在选票接收过程中,如果发现该外部选票的选举轮次小于当前服务器的,那么忽略该外部投票,同时立即发送自己的内部投票。

 · WorkerSender:选票发送器,不断地从sendqueue中获取待发送的选票,并将其传递到底层QuorumCnxManager中。

(2) 算法核心

【成神之路】Dubbo&Zookeeper相关面试题_第6张图片

上图展示了FastLeaderElection模块是如何与底层网络I/O进行交互的。Leader选举的基本流程如下

1. 自增选举轮次。Zookeeper规定所有有效的投票都必须在同一轮次中,在开始新一轮投票时,会首先对logicalclock进行自增操作。

2. 初始化选票。在开始进行新一轮投票之前,每个服务器都会初始化自身的选票,并且在初始化阶段,每台服务器都会将自己推举为Leader。

3. 发送初始化选票。完成选票的初始化后,服务器就会发起第一次投票。Zookeeper会将刚刚初始化好的选票放入sendqueue中,由发送器WorkerSender负责发送出去。

4. 接收外部投票。每台服务器会不断地从recvqueue队列中获取外部选票。如果服务器发现无法获取到任何外部投票,那么就会立即确认自己是否和集群中其他服务器保持着有效的连接,如果没有连接,则马上建立连接,如果已经建立了连接,则再次发送自己当前的内部投票。

5. 判断选举轮次。在发送完初始化选票之后,接着开始处理外部投票。在处理外部投票时,会根据选举轮次来进行不同的处理。

· 外部投票的选举轮次大于内部投票。若服务器自身的选举轮次落后于该外部投票对应服务器的选举轮次,那么就会立即更新自己的选举轮次(logicalclock),并且清空所有已经收到的投票,然后使用初始化的投票来进行PK以确定是否变更内部投票。最终再将内部投票发送出去。

· 外部投票的选举轮次小于内部投票。若服务器接收的外选票的选举轮次落后于自身的选举轮次,那么Zookeeper就会直接忽略该外部投票,不做任何处理,并返回步骤4。

· 外部投票的选举轮次等于内部投票。此时可以开始进行选票PK。

6. 选票PK。在进行选票PK时,符合任意一个条件就需要变更投票。

· 若外部投票中推举的Leader服务器的选举轮次大于内部投票,那么需要变更投票。

· 若选举轮次一致,那么就对比两者的ZXID,若外部投票的ZXID大,那么需要变更投票。

· 若两者的ZXID一致,那么就对比两者的SID,若外部投票的SID大,那么就需要变更投票。

7. 变更投票。经过PK后,若确定了外部投票优于内部投票,那么就变更投票,即使用外部投票的选票信息来覆盖内部投票,变更完成后,再次将这个变更后的内部投票发送出去。

8. 选票归档。无论是否变更了投票,都会将刚刚收到的那份外部投票放入选票集合recvset中进行归档。recvset用于记录当前服务器在本轮次的Leader选举中收到的所有外部投票(按照服务队的SID区别,如{(1, vote1), (2, vote2)...})。

9. 统计投票。完成选票归档后,就可以开始统计投票,统计投票是为了统计集群中是否已经有过半的服务器认可了当前的内部投票,如果确定已经有过半服务器认可了该投票,则终止投票。否则返回步骤4。

10. 更新服务器状态。若已经确定可以终止投票,那么就开始更新服务器状态,服务器首选判断当前被过半服务器认可的投票所对应的Leader服务器是否是自己,若是自己,则将自己的服务器状态更新为LEADING,若不是,则根据具体情况来确定自己是FOLLOWING或是OBSERVING。

以上10个步骤就是FastLeaderElection的核心,其中步骤4-9会经过几轮循环,直到有Leader选举产生。

总结:

了解了Leader选举的具体细节,这对于之后的代码分析会打下很好的基础。也谢谢各位园友的观看~

gaoshan个人解释,选举轮次,也就是逻辑时钟,即logicalclock。这个值,不会频繁变化,一次选举,自增一次。一次选举过程中,可能包括多次投票,投票不涉及逻辑时钟的自增。

举例,初始情况下5台机器,sid分别为1、2、3、4、5,逻辑时钟都是0。依次启动后,开始选举,所有的机器逻辑时钟自增为1。经过多次投票,假设第三台机器为leader,其他4台机器为follower,此时5台机器的逻辑时钟都为1。

一般情况下,逻辑时钟应该都是相同的。但是,由于一些机器崩溃的问题,是可能出现逻辑时钟不一致的情况的。例如,上例中,sid=3的机器为leader。之后某一刻,sid为1、3的机器崩溃,zookeeper仍然可以正常对外提供服务。但需要重新选主,剩下的2、4、5重新投票选主,假设sid=5成为新的leader,逻辑时钟自增,由1变成2。之后某一刻,sid为5的机器奔溃,sid为1的机器复活,仍然有3台机器运行,zookeeper可以对外提供服务,但需要重新选主。重新选主,逻辑时钟自增,这时sid为2、4的机器的逻辑时钟是由2自增为3,而sid为1的机器的逻辑时钟是由1自增为2。这种情况下,就出现了逻辑时钟不一致的情况。这时,需要清楚sid为1的机器内部的投票数据,因为这些投票数据都是过时的数据。

zookeeper一致性协议ZAB原理

一致性协议有很多种,比如 Paxos,Raft,2PC,3PC等等,今天我们讲一种协议,ZAB 协议,该协议应该是所有一致性协议中生产环境中应用最多的了。为什么呢?因为他是为 Zookeeper 设计的分布式一致性协议!

1、ZAB 协议全称:Zookeeper Atomic Broadcast(Zookeeper 原子广播协议)。

2、Zookeeper 是一个为分布式应用提供高效且可靠的分布式协调服务。在解决分布式一致性方面,Zookeeper 并没有使用 Paxos ,而是采用了 ZAB 协议。

3、ZAB 协议定义:ZAB 协议是为分布式协调服务 Zookeeper 专门设计的一种支持 崩溃恢复 和 原子广播 协议。下面我们会重点讲这两个东西。

4、基于该协议,Zookeeper 实现了一种 主备模式 的系统架构来保持集群中各个副本之间 数据一致性。具体如下图所示:

【成神之路】Dubbo&Zookeeper相关面试题_第7张图片

上图显示了 Zookeeper 如何处理集群中的数据。所有客户端写入数据都是写入到 主进程(称为 Leader)中,然后,由 Leader 复制到备份进程(称为 Follower)中。从而保证数据一致性。从设计上看,和 Raft 类似。

那么复制过程又是如何的呢?

复制过程类似 2PC,ZAB 只需要 Follower 有一半以上返回 Ack 信息就可以执行提交,大大减小了同步阻塞。也提高了可用性。

简单介绍完,开始重点介绍 消息广播 和 崩溃恢复。整个 Zookeeper 就是在这两个模式之间切换。 简而言之,当 Leader 服务可以正常使用,就进入消息广播模式,当 Leader 不可用时,则进入崩溃恢复模式。

消息广播

ZAB 协议的消息广播过程使用的是一个原子广播协议,类似一个 二阶段提交过程。对于客户端发送的写请求,全部由 Leader 接收,Leader 将请求封装成一个事务 Proposal,将其发送给所有 Follwer ,然后,根据所有 Follwer 的反馈,如果超过半数成功响应,则执行 commit 操作(先提交自己,再发送 commit 给所有 Follwer)。

基本上,整个广播流程分为 3 步骤:

1、将数据都复制到 Follwer 中

【成神之路】Dubbo&Zookeeper相关面试题_第8张图片

2、等待 Follwer 回应 Ack,最低超过半数即成功

【成神之路】Dubbo&Zookeeper相关面试题_第9张图片

3、当超过半数成功回应,则执行 commit ,同时提交自己

【成神之路】Dubbo&Zookeeper相关面试题_第10张图片

通过以上 3 个步骤,就能够保持集群之间数据的一致性。实际上,在 Leader 和 Follwer 之间还有一个消息队列,用来解耦他们之间的耦合,避免同步,实现异步解耦。

还有一些细节:

1、Leader 在收到客户端请求之后,会将这个请求封装成一个事务,并给这个事务分配一个全局递增的唯一 ID,称为事务ID(ZXID),ZAB 兮协议需要保证事务的顺序,因此必须将每一个事务按照 ZXID 进行先后排序然后处理。

2、在 Leader 和 Follwer 之间还有一个消息队列,用来解耦他们之间的耦合,解除同步阻塞。

3、zookeeper集群中为保证任何所有进程能够有序的顺序执行,只能是 Leader 服务器接受写请求,即使是 Follower 服务器接受到客户端的请求,也会转发到 Leader 服务器进行处理。

4、实际上,这是一种简化版本的 2PC,不能解决单点问题。等会我们会讲述 ZAB 如何解决单点问题(即 Leader 崩溃问题)。

崩溃恢复

刚刚我们说消息广播过程中,Leader 崩溃怎么办?还能保证数据一致吗?如果 Leader 先本地提交了,然后 commit 请求没有发送出去,怎么办?

实际上,当 Leader 崩溃,即进入我们开头所说的崩溃恢复模式(崩溃即:Leader 失去与过半 Follwer 的联系)。下面来详细讲述。

假设1:Leader 在复制数据给所有 Follwer 之后崩溃,怎么办?

假设2:Leader 在收到 Ack 并提交了自己,同时发送了部分 commit 出去之后崩溃怎么办?

针对这些问题,ZAB 定义了 2 个原则:

1、ZAB 协议确保那些已经在 Leader 提交的事务最终会被所有服务器提交。

2、ZAB 协议确保丢弃那些只在 Leader 提出/复制,但没有提交的事务。

所以,ZAB 设计了下面这样一个选举算法:能够确保提交已经被 Leader 提交的事务,同时丢弃已经被跳过的事务。

针对这个要求,如果让 Leader 选举算法能够保证新选举出来的 Leader 服务器拥有集群总所有机器编号(即 ZXID 最大)的事务,那么就能够保证这个新选举出来的 Leader 一定具有所有已经提交的提案。

而且这么做有一个好处是:可以省去 Leader 服务器检查事务的提交和丢弃工作的这一步操作。

【成神之路】Dubbo&Zookeeper相关面试题_第11张图片

这样,我们刚刚假设的两个问题便能够解决。假设 1 最终会丢弃调用没有提交的数据,假设 2 最终会同步所有服务器的数据。这个时候,就引出了一个问题,如何同步?

数据同步

当崩溃恢复之后,需要在正式工作之前(接收客户端请求),Leader 服务器首先确认事务是否都已经被过半的 Follwer 提交了,即是否完成了数据同步。目的是为了保持数据一致。

当所有的 Follwer 服务器都成功同步之后,Leader 会将这些服务器加入到可用服务器列表中。

实际上,Leader 服务器处理或丢弃事务都是依赖着 ZXID 的,那么这个 ZXID 如何生成呢?

答:在 ZAB 协议的事务编号 ZXID 设计中,ZXID 是一个 64 位的数字,其中低 32 位可以看作是一个简单的递增的计数器,针对客户端的每一个事务请求,Leader 都会产生一个新的事务 Proposal 并对该计数器进行 + 1 操作。

而高 32 位则代表了 Leader 服务器上取出本地日志中最大事务 Proposal 的 ZXID,并从该 ZXID 中解析出对应的 epoch 值,然后再对这个值加一。

【成神之路】Dubbo&Zookeeper相关面试题_第12张图片

高 32 位代表了每代 Leader 的唯一性,低 32 代表了每代 Leader 中事务的唯一性。同时,也能让 Follwer 通过高 32 位识别不同的 Leader。简化了数据恢复流程。

基于这样的策略:当 Follower 链接上 Leader 之后,Leader 服务器会根据自己服务器上最后被提交的 ZXID 和 Follower 上的 ZXID 进行比对,比对结果要么回滚,要么和 Leader 同步。

总结

ZAB 协议和我们之前看的 Raft 协议实际上是有相似之处的,比如都有一个 Leader,用来保证一致性(Paxos 并没有使用 Leader 机制保证一致性)。再有采取过半即成功的机制保证服务可用(实际上 Paxos 和 Raft 都是这么做的)。

ZAB 让整个 Zookeeper 集群在两个模式之间转换,消息广播和崩溃恢复,消息广播可以说是一个简化版本的 2PC,通过崩溃恢复解决了 2PC 的单点问题,通过队列解决了 2PC 的同步阻塞问题。

而支持崩溃恢复后数据准确性的就是数据同步了,数据同步基于事务的 ZXID 的唯一性来保证。通过 + 1 操作可以辨别事务的先后顺序。

你可能感兴趣的:(面试)