剑指offer-题67:机器人的运动范围(回溯法)

题目描述

地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?

实验平台:牛客网


解决思路:

这题和剑指offer-题66:矩阵中的路径(回溯法)类似,都是用回溯法解决,具体代码如下:

java:

public class Solution {
    public int movingCount(int threshold, int rows, int cols) {
        boolean[] visited = new boolean[rows * cols];
        int count = movingCountCore(threshold, rows, cols, 0, 0, visited);
        return count;
    }

    public int movingCountCore(int threshold, int rows, int cols, int row, int col, boolean[] visited) {
        int count = 0;
        if (cheak(threshold, rows, cols, row, col, visited)) {
            visited[row * cols + col] = true;
            count = 1 + movingCountCore(threshold, rows, cols, row + 1, col, visited)
                    + movingCountCore(threshold, rows, cols, row - 1, col, visited)
                    + movingCountCore(threshold, rows, cols, row, col + 1, visited)
                    + movingCountCore(threshold, rows, cols, row, col - 1, visited);
        }
        return count;
    }

    public boolean cheak(int threshold, int rows, int cols, int row, int col, boolean[] visited) {
        if (row >= 0 && col >= 0 && row < rows && col < cols && !visited[row * cols + col]
                && getDigitSum(row) + getDigitSum(col) <= threshold) {
            return true;
        }
        return false;
    }

    // 每位数字之和
    public int getDigitSum(int num) {
        int sum = 0;
        while (num != 0) {
            sum += num % 10;
            num /= 10;
        }
        return sum;
    }
}

python:

你可能感兴趣的:(剑指offer)