Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
解题思路:
这道题的意思是求出二叉树任何两点的最低公共节点。与二分查找树的不同是,这个查找并没有规律,只能暴力法进行。
解法一:
递归法。倘若p, q都在root的左孩子树中,则令root=root->left。倘若p, q都在root的右孩子树种,则令root=root->right。否则,返回root。这种方法会有很多重复计算,产生超时错误。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==NULL){
return NULL;
}
if(isInTree(root->left, p) && isInTree(root->left, q)){
return lowestCommonAncestor(root->left, p, q);
}else if(isInTree(root->right, p) && isInTree(root->right, q)){
return lowestCommonAncestor(root->right, p, q);
}else{
return root;
}
}
bool isInTree(TreeNode* root, TreeNode* p){
if(root==NULL){
return false;
}
return root == p || isInTree(root->left, p) || isInTree(root->right, p);
}
};
解法二:
可以先求出p,q到根节点的路径,然后找到路径中第一个相同的节点。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==NULL){
return NULL;
}
if(p==q){
return p;
}
vector pPath;
vector qPath;
getPath(root, p, pPath);
getPath(root, q, qPath);
int i = pPath.size() - 1;
int j = qPath.size() - 1;
while(i>=0 && j>=0){
if(pPath[i] == qPath[j]){
i--;
j--;
}else{
return pPath[i+1];
}
}
return pPath[i+1];
}
bool getPath(TreeNode* root, TreeNode* p, vector& pPath){
if(root==NULL){
return false;
}
if(root==p){
pPath.push_back(root);
return true;
}
if(getPath(root->left, p, pPath) || getPath(root->right, p, pPath)){
pPath.push_back(root);
return true;
}
return false;
}
};