考场debuffdebuffdebuff太严重了
下来一眼沙比提
考虑其实就是
求一段区间
Max∣∑i∈[l,r](xi,yi)∗(x,y)∣Max|\sum_{i\in [l,r]}(x_i,y_i)*(x,y)|Max∣i∈[l,r]∑(xi,yi)∗(x,y)∣
因为叉积不同方向会有正负
由于有绝对值,可以拆成最大前缀和减去最小前缀和
先只考虑最大前缀和
即Max∑xi∗y−∑yi∗xMax \sum{x_i}*y-\sum{y_i}*xMax∑xi∗y−∑yi∗x
考虑2个前缀i,ji,ji,j,iii比jjj大,则
(∑xi−∑xj)∗y−(∑yi−∑yj)∗x>0(\sum{x_i}-\sum{x_j})*y-(\sum{y_i}-\sum{y_j})*x>0(∑xi−∑xj)∗y−(∑yi−∑yj)∗x>0
化一下就变成了
(∑yi−∑yk)(∑xi−∑xj)<yx\frac{(\sum{y_i}-\sum{y_k})}{(\sum{x_i}-\sum{x_j})}<\frac y x(∑xi−∑xj)(∑yi−∑yk)<xy
就是一个很裸地斜率式子了,每次二分即可
复杂度O(nlogn)O(nlogn)O(nlogn)
#include
using namespace std;
#define int long long
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ob==ib)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
const int N=1000005;
int X[N],Y[N],n,m1,m2,q;
struct point{
int x,y;
point(int _x=0,int _y=0):x(_x),y(_y){}
friend inline point operator +(const point &a,const point &b){
return point(a.x+b.x,a.y+b.y);
}
friend inline point operator -(const point &a,const point &b){
return point(a.x-b.x,a.y-b.y);
}
friend inline int operator *(const point &a,const point &b){
return (a.x*b.y-a.y*b.x);
}
}p[N],up[N],down[N];
inline void graham(){
up[1]=down[1]=point(0,0),up[2]=down[2]=p[1],m1=m2=2;
for(int i=2;i<=n;i++){
while(m1>=2&&(up[m1]-up[m1-1])*(p[i]-up[m1-1])>=0)m1--;
up[++m1]=p[i];
while(m2>=2&&(p[i]-down[m2-1])*(down[m2]-down[m2-1])>=0)m2--;
down[++m2]=p[i];
}
}
inline double calc(const point &a,double k){
return a.y-a.x*k;
}
inline double checkup(double k){
int l=1,res=l,r=m1;
while(l<=r){
int mid=(l+r)>>1;
if(calc(up[mid],k)>=calc(up[mid+1],k))r=mid-1,res=mid;
else l=mid+1;
}
return calc(up[res],k);
}
inline double checkdown(double k){
int l=1,res=l,r=m2;
while(l<=r){
int mid=(l+r)>>1;
if(calc(down[mid],k)<=calc(down[mid+1],k))r=mid-1,res=mid;
else l=mid+1;
}
return calc(down[res],k);
}
signed main(){
n=read();
for(int i=1;i<=n;i++)X[i]=read(),Y[i]=read();
for(int i=1;i<=n;i++)p[i]=p[i-1]+point(X[i],Y[i]);
graham();
q=read();
for(int i=1;i<=q;i++){
int x=read(),y=read();
double k=1.0*y/x;
double f1=checkup(k);
double f2=checkdown(k);
cout<<(int)round(x*(f1-f2))<<'\n';
}
}