采样频率为什么一定要大于原始信号两倍

先来定性分析:对于一个正(余)弦信号的曲线,我们并不需要将曲线上面每一点都记录下来,只需要就一些特殊点就够了,比如相邻两个零点的位置(上图红色的两个点)或者相邻的波峰和波谷的位置(上图绿色的两个点),只要是按照正(余)弦信号的规则,就能够根据这些特殊点还原出正(余)弦信号,用香农信息论的观点来看就是这两个点已经包含了正(余)弦信号的信息熵,两个点足矣。 再来定量分析:上图所示正弦信号周期为1,两个采样点,无论是相邻的两个零点还是相邻的波峰与波谷位置的间隔都是0.5,因此,可知采样的周期为0.5,恰好为正弦信号周期的一半。从频谱来看,采样使频谱发生的周期性延拓,为了使延拓后的频谱不发生混叠,因此,采样周期必须为信号周期的2倍。 当然,这只是分析了一个简单的正(余)弦信号,但是绝大多数信号都是能够进行傅里叶变换的,就意味着,不管一个信号多么复杂,总可以分解为若干个正(余)弦信号的和,对应了信号的频率分量。因此,Nyquist采样定理只需找到信号最大的频率分量,再用2倍于最大频率分量的采样频率对信号进行采样,从理论上解决了,离散信号能够重建出连续信号的问题。故而, Nyquist采样定理是连接连续和离散的桥梁。
详细过程可看:
作者:林扬飞 链接:https://www.zhihu.com/question/24490634/answer/28430016 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

转载于:https://www.cnblogs.com/huangdewei/p/6704248.html

你可能感兴趣的:(采样频率为什么一定要大于原始信号两倍)