网络最大流之初见

•参考资料

[1]: 最大流入门

[2]: 算法讲堂

[3]: Dinic优化

•理解

通俗理解最大流就是在某个时间点从源点S到终点T流过的水的最大值

网络最大流之初见_第1张图片

如图,最大流为9

网络最大流之初见_第2张图片

①线路 S->3->T:可以流过$min(5,3)=3$,然后$S->3$还有$5-3=2$的剩余

②线路 S->1->2->T:可以流过$min(5,6,10)=5$,然后$1->2$还有$6-5=1$的剩余,$2->T$还有$10-5=5$的剩余

③线路S->3->1->2->T: 可以流过$min(2,3,1,5)=1$

最大流$=①+②+③=9$

•算法

将图分层,每一层都是按照不同方式的几条从原点到汇点的路径

利用bfs寻找所有的分层方法,分完层利用dfs去试探,找到所有分层方式中水流最大的一种

•优化

  •  当前弧优化

    对于一次 bfs() 后寻找增广路来说,如果询问了一条路的编号为 a 时,那么不再会通过这条路增广。

    比如已经对$1->2->3$进行了增广,那在到$2$时,$2->3$已经不会增加流量了,所有可以直接略过 (一般用处不大...)

  • 多路增广

    dfs时一次找到该点u所有的增广路,用一个$flow$记录流向u的流量,用$nowflow$记录流出u的流量

    $nowflow$的计算就需要通过u流向的点来计算。$nowflow$肯定是下于等于$flow$的,当$nowflow==flow$时可以直接$break$

    在增广时对正向边和反向边操作有个小技巧,因为在加边时正向边和反向边是一起加入的一前一后,所以两条边是相邻的

    正向边序号^1=反向边序号,反向边序号^1=正向边序号。前提是第一条边序号是偶数,所以向前星的下标从0开始的

  • 炸点优化

    如果当前 u 点伸展完后发现过这个点没有任何增广路被发现,即当前点$nowflow==0$ ,

    则说明增广路不可能通过该点伸展,使得d[u] = -2,不再伸展这个点

•模板

最大流Dinic

 

转载于:https://www.cnblogs.com/MMMinoz/p/11587033.html

你可能感兴趣的:(网络最大流之初见)