[kylin] 部署kylin服务

 

官网:

http://kylin.apache.org/

社区:

https://github.com/KylinOLAP/Kylin/issues

http://apache-kylin.74782.x6.nabble.com/ 

源码:

https://github.com/apache/kylin

博客:

 Apache Kylin的快速数据立方体算法

Apache Kylin (v1.5.0) 发布,全新设计的新一代

Apache基金会宣布Apache Kylin成为顶级项目

逐层(By Level)算法 VS 逐块(By Split) 算法

Kylin正式发布:面向大数据的终极OLAP引擎方案

Apache Kylin在百度地图的实践

京东王晓雨:Apache Kylin在云海的实践

 

 

一、工具准备

zookeeper3.4.6 (hadoop、hbase 管理工具)
Hadoop.2.7.1
Hbase1.1.4
Kylin1.5.0-HBase1.1.3
Jdk1.7.80
Hive 2.0.0

二、虚拟主机

192.168.200.165 master1
192.168.200.166 master2
192.168.200.167 slave1
192.168.200.168 slave2

三、安装mysql

查看是否安装了mysqlmaster1

[root@master1 ~]# ps -aux | grep mysql
Mysql 3632 0.0 0.0 115348 1648?SsApr01 0:00 /bin/sh /wdcloud/app/mysql/bin/mysqld_safe
mysql 4519 0.5 19.8 13895940 1591664 ? Sl Apr01 29:55
/wdcloud/app/mysql/bin/mysqld
--basedir=/wdcloud/app/mysql
--datadir=/wdcloud/data/mysql/data
--plugin-dir=/wdcloud/app/mysql/lib/mysql/plugin
--log-error=/wdcloud/data/mysql/data/mysql-error.log
--open-files-limit=20000
--pid-file=/wdcloud/data/mysql/data/localhost.localdomain.pid 
--socket=/tmp/mysql.sock
--port=3306

查看mysql版本

[root@master1 ~]# mysql --version
mysql  Ver 14.14 Distrib 5.6.29-76.2, for Linux (x86_64) using  6.2

登录mysql

[root@master1 ~]# mysql -uroot -p
Enter password:

四、安装jdk

查看安装版本

[root@master1 ~]# java -version
java version "1.7.0_80"
Java(TM) SE Runtime Environment (build 1.7.0_80-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.80-b11, mixed mode)

查看安装位置

[root@master1 ~]# which java
/jdk1.7.0_80/bin/java

五、安装zookeeper

1.解压缩zookeeper到根目录下,进入目录,创建文件夹data、datalog、logs,配置环境变量

export ZOOKEEPER_HOME=/zookeeper-3.4.6
export PATH=$PATH:$ZOOKEEPER_HOME/bin

2.进入conf文件夹,复制zoo_sample.cfg 为zoo.cfg

3.修改zoo.cfg,增加红色内容,保存退出:

tickTime=2000
initLimit=10
syncLimit=5
dataDir=/zookeeper-3.4.6/data
dataLogDir=/zookeeper-3.4.6/datalog
clientPort=2181
server.0=master1:2888:3888
server.1=master2:2888:3888
server.2=slave1:2888:3888
server.3=slave2:2888:3888

修改conf下的log4j.properties文件,配置log文件生成位置

zookeeper.log.dir=/zookeeper-3.4.6/logs
zookeeper.log.file=zookeeper.log
zookeeper.tracelog.dir=/zookeeper-3.4.6/logs
zookeeper.tracelog.file=zookeeper_trace.log

4.进入data文件夹创建文件“myid”,添加内容 0 保存退出

5.分发zookeeper文件夹到各个虚拟主机上的根目录上

scp –r /zookeeper-3.4.6 hadoop@master2:/
scp –r /zookeeper-3.4.6 hadoop@slave1:/
scp –r /zookeeper-3.4.6 hadoop@ slave2:/

6.修改每台主机上的myid ,按照顺序 master1 的myid 为0 master2 的myid 1 以此类推。

7.启动zookeeper

分别进入各个虚拟主机的zookeeper目录下启动zk服务

bin/zkServer.sh start

8.分别查询zookeeper的状态

bin/zkServer.sh status
[hadoop@master1 ~]$ zkServer.sh status
JMX enabled by default
Using config: /zookeeper-3.4.6/bin/../conf/zoo.cfg
Mode: follower

Leader 是 zookeeper 主机启动了

Follower是zookeeper 从机启动了

 9.停止zookeeper

Bin/zkServer stop

 

六、hadoop 高可用部署

1.解压缩hadoop2.7.1到hadoop家目录下,进入目录,创建文件夹tmp,hdfs/name,hdfs/data

2.进入~/hadoop/etc/hadoop,该文件夹包含了hadoop的大部分配置文件。

3.修改hadoop各配置文件如下:

core-site.xml


         
                fs.default.name
                hdfs://master1:9000
                true
        
        
                hadoop.tmp.dir
                /home/hadoop/hadoop/tmp
                A base for other tempory directories
        
        
                io.file.buffer.size
                131702
         
        
                 fs.checkpoint.period
                 3600
                 多长时间记录一次hdfs的镜像,默认一小时
        
        
                 fs.checkpoint.size
                 67108864
                 一次记录多大的size,默认64M
        

hadoop.env.sh

#设置JAVA_HOME
export JAVA_HOME=/jdk1.7.0_80

#设置HADOOP_CONF_DIR
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"}

hbase-site.xml


         
                   hbase.rootdir
                   hdfs://master1:9000/hbase
         
         
                   hbase.cluster.distributed
                   true
         
         
                   hbase.zookeeper.quorum
                   master1,master2,slave1, slave2
         
         
                   hbase.zookeeper.property.dataDir
                    /zookeeper-3.4.6 /data
         
         
                   hbase.zookeeper.property.clientPort
                   2181
         
         
                 hbase.coprocessor.user.region.classes
                 org.apache.hadoop.hbase.coprocessor.AggregateImplementation
         
         
                   hbase.regionserver.wal.codec
                   org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec
         
         
                   hbase.master.loadbalancer.class
                 org.apache.phoenix.hbase.index.balancer.IndexLoadBalancer
         
         
                   hbase.coprocessor.master.classes
                   org.apache.phoenix.hbase.index.master.IndexMasterObserver
         
         
                   phoenix.query.maxServerCacheBytes
                   1073741824
         
         
                   hbase.client.scanner.caching
                   5000
                   HBase客户端扫描缓存,对查询性能有很大帮助
         
         
                   hbase.rpc.timeout
                   360000000
         

hdfs-site.xml 


        
                dfs.namenode.name.dir
                /home/hadoop/hadoop/hdfs/name
        
    
        dfs.datanode.data.dir
        /home/hadoop/hadoop/hdfs/data
    
    
        dfs.replication
        4
    
    
        dfs.namenode.secondary.http-address
        master2:9001
    
    
         dfs.webhdfs.enabled
        true
    
    
         dfs.client.read.shortcircuit
         false
    

mapred-site.xml 


  
     mapreduce.framework.name
     yarn
    
  
     mapreduce.jobtracker.http.address
      NameNode:50030
  
    
        mapreduce.jobhistory.address
        master1:10020
    
    
        mapreduce.jobhistory.webapp.address
        master1:19888
    
         
        mapred.compress.map.output
        true
         

新增masters文件,以部署高可用的hadoop,将master2作为Secondary Name Node 

masters

master2

slaves 

master1
master2
slave1
slave2

yarn-env.sh 

export YARN_CONF_DIR="${YARN_CONF_DIR:-$HADOOP_YARN_HOME/conf}"
export JAVA_HOME=/jdk1.7.0_80
JAVA=$JAVA_HOME/bin/java
JAVA_HEAP_MAX=-Xmx4096m

yarn-site.xml 


         
                   yarn.resourcemanager.zk-address
                  master1:2181,master2:2181,slave1:2181,slave2:2181
         
         
        yarn.nodemanager.aux-services
        mapreduce_shuffle
    
    
       yarn.nodemanager.auxservices.mapreduce.shuffle.class
        org.apache.hadoop.mapred.ShuffleHandler
    
    
        yarn.resourcemanager.address
        master1:8032
    
    
        yarn.resourcemanager.scheduler.address
        master1:8030
    
    
        yarn.resourcemanager.resource-tracker.address
        master1:8031
    
    
        yarn.resourcemanager.admin.address
        master1:8033
    
    
        yarn.resourcemanager.webapp.address
        master1:8088
    
    
        yarn.nodemanager.resource.memory-mb
        2048
         

4.配置hadoop环境变量

export HADOOP_HOME=/home/hadoop/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin


5.查看hadoop是否安装配置成功
 

[hadoop@master1 ~]$ hadoop version
Hadoop 2.7.1
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git
-r 15ecc87ccf4a0228f35af08fc56de536e6ce657a
Compiled by jenkins on 2015-06-29T06:04Z
Compiled with protoc 2.5.0
From source with checksum fc0a1a23fc1868e4d5ee7fa2b28a58a
This command was run using
/home/hadoop/hadoop/share/hadoop/common/hadoop-common-2.7.1.jar

6.分发hadoop文件夹到各个虚拟主机上的hadoop家目录上

scp -r  ~/hadoop/ hadoop@master2:~
scp -r  ~/hadoop/ hadoop@slave1:~
scp -r  ~/hadoop/ hadoop@slave2:~

7.重新格式化hdfs系统 

如果集群刚配置从没启动过,直接执行格式化操作。

如果集群已经格式化了后启动过,则先执行删除旧数据的操作后,在执行格式化操作。

 

1)删除旧数据

在 hdfs-ste.xml 配置了

dfs.name.dir = /home/hadoop/hdfs/name (namenode上存储hdfs名字空间元数据)

dfs.data.dir = /home/hadoop/hdfs/data (datanode上数据块的物理存储位置)

 

在core-site.xml中配置了

hadoop.tmp.dir = /home/hadoop/hadoop/tmp(namenode上本地的hadoop临时文件夹)

 

将各个集群节点这三个文件夹下面的文件和目录全部删除

 

2)执行格式化命令

hadoop namenode -format

 

3)格式化日志

DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.
16/04/05 02:02:28 INFO namenode.NameNode: STARTUP_MSG:

/***********************************************************
STARTUP_MSG:   Starting NameNode
STARTUP_MSG:   host = master1/192.168.200.165
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 2.7.1
STARTUP_MSG:   classpath =
/home/hadoop/hadoop/etc/hadoop:/home/hadoop/hadoop/share/hadoop/common/lib/commons-configuration-1.6.jar:/home/hadoop/hadoop/share/hadoop/common/lib/curator-client-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/gson-2.2.4.jar:/home/hadoop/hadoop/share/hadoop/common/lib/activation-1.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jackson-jaxrs-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jsp-api-2.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/apacheds-kerberos-codec-2.0.0-M15.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-io-2.4.jar:/home/hadoop/hadoop/share/hadoop/common/lib/paranamer-2.3.jar:/home/hadoop/hadoop/share/hadoop/common/lib/httpclient-4.2.5.jar:/home/hadoop/hadoop/share/hadoop/common/lib/log4j-1.2.17.jar:/home/hadoop/hadoop/share/hadoop/common/lib/htrace-core-3.1.0-incubating.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jets3t-0.9.0.jar:/home/hadoop/hadoop/share/hadoop/common/lib/zookeeper-3.4.6.jar:/home/hadoop/hadoop/share/hadoop/common/lib/hadoop-auth-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/java-xmlbuilder-0.4.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jettison-1.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/slf4j-api-1.7.10.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jersey-server-1.9.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jackson-mapper-asl-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/common/lib/avro-1.7.4.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-codec-1.4.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-cli-1.2.jar:/home/hadoop/hadoop/share/hadoop/common/lib/curator-recipes-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-net-3.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop/share/hadoop/common/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop/share/hadoop/common/lib/hadoop-annotations-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-digester-1.8.jar:/home/hadoop/hadoop/share/hadoop/common/lib/guava-11.0.2.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jsch-0.1.42.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jersey-core-1.9.jar:/home/hadoop/hadoop/share/hadoop/common/lib/api-util-1.0.0-M20.jar:/home/hadoop/hadoop/share/hadoop/common/lib/api-asn1-api-1.0.0-M20.jar:/home/hadoop/hadoop/share/hadoop/common/lib/xz-1.0.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-httpclient-3.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/home/hadoop/hadoop/share/hadoop/common/lib/stax-api-1.0-2.jar:/home/hadoop/hadoop/share/hadoop/common/lib/asm-3.2.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jackson-xc-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jersey-json-1.9.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jsr305-3.0.0.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-collections-3.2.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-math3-3.1.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jetty-6.1.26.jar:/home/hadoop/hadoop/share/hadoop/common/lib/snappy-java-1.0.4.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/hamcrest-core-1.3.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jaxb-api-2.2.2.jar:/home/hadoop/hadoop/share/hadoop/common/lib/commons-lang-2.6.jar:/home/hadoop/hadoop/share/hadoop/common/lib/junit-4.11.jar:/home/hadoop/hadoop/share/hadoop/common/lib/jackson-core-asl-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/common/lib/mockito-all-1.8.5.jar:/home/hadoop/hadoop/share/hadoop/common/lib/servlet-api-2.5.jar:/home/hadoop/hadoop/share/hadoop/common/lib/httpcore-4.2.5.jar:/home/hadoop/hadoop/share/hadoop/common/lib/curator-framework-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar:/home/hadoop/hadoop/share/hadoop/common/lib/apacheds-i18n-2.0.0-M15.jar:/home/hadoop/hadoop/share/hadoop/common/lib/xmlenc-0.52.jar:/home/hadoop/hadoop/share/hadoop/common/hadoop-common-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/common/hadoop-common-2.7.1-tests.jar:/home/hadoop/hadoop/share/hadoop/common/hadoop-nfs-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/hdfs:/home/hadoop/hadoop/share/hadoop/hdfs/lib/xml-apis-1.3.04.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/commons-io-2.4.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/htrace-core-3.1.0-incubating.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/jackson-mapper-asl-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/commons-cli-1.2.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/xercesImpl-2.9.1.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/guava-11.0.2.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/netty-all-4.0.23.Final.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/asm-3.2.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/jsr305-3.0.0.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/jetty-6.1.26.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/commons-lang-2.6.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/leveldbjni-all-1.8.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/jackson-core-asl-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/home/hadoop/hadoop/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/home/hadoop/hadoop/share/hadoop/hdfs/hadoop-hdfs-2.7.1-tests.jar:/home/hadoop/hadoop/share/hadoop/hdfs/hadoop-hdfs-nfs-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/hdfs/hadoop-hdfs-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/activation-1.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jackson-jaxrs-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jaxb-impl-2.2.3-1.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/commons-io-2.4.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/log4j-1.2.17.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/zookeeper-3.4.6.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jettison-1.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/zookeeper-3.4.6-tests.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jersey-server-1.9.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jackson-mapper-asl-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/commons-codec-1.4.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/commons-cli-1.2.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jersey-client-1.9.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/aopalliance-1.0.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/guava-11.0.2.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jersey-core-1.9.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jersey-guice-1.9.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/guice-3.0.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/xz-1.0.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/stax-api-1.0-2.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/asm-3.2.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jackson-xc-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jersey-json-1.9.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jsr305-3.0.0.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/commons-collections-3.2.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jetty-6.1.26.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jaxb-api-2.2.2.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/commons-lang-2.6.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/leveldbjni-all-1.8.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/jackson-core-asl-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/servlet-api-2.5.jar:/home/hadoop/hadoop/share/hadoop/yarn/lib/javax.inject-1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-server-common-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-server-applicationhistoryservice-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-common-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-api-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-client-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-server-resourcemanager-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-registry-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-server-sharedcachemanager-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-server-tests-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/commons-io-2.4.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/hadoop-annotations-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/guice-3.0.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/xz-1.0.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/asm-3.2.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/hamcrest-core-1.3.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/junit-4.11.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/leveldbjni-all-1.8.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/jackson-core-asl-1.9.13.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/lib/javax.inject-1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.1-tests.jar:/home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.7.1.jar:/home/hadoop/hadoop/contrib/capacity-scheduler/*.jar:/home/hadoop/hadoop/contrib/capacity-scheduler/*.jar

STARTUP_MSG:   build = https://git-wip-us.apache.org/repos/asf/hadoop.git

-r 15ecc87ccf4a0228f35af08fc56de536e6ce657a; compiled by 'jenkins' on 2015-06-29T06:04Z

STARTUP_MSG:   java = 1.7.0_80

************************************************************/

16/04/05 02:02:28 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT]
16/04/05 02:02:28 INFO namenode.NameNode: createNameNode [-format]
Formatting using clusterid: CID-070fc765-1b22-4453-83ba-7635ea906e1d
16/04/05 02:02:29 INFO namenode.FSNamesystem: No KeyProvider found.
16/04/05 02:02:29 INFO namenode.FSNamesystem: fsLock is fair:true
16/04/05 02:02:29 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000
16/04/05 02:02:29 INFO blockmanagement.DatanodeManager:
dfs.namenode.datanode.registration.ip-hostname-check=true
16/04/05 02:02:29 INFO blockmanagement.BlockManager:
dfs.namenode.startup.delay.block.deletion.sec is set to 000:00:00:00.000
16/04/05 02:02:29 INFO blockmanagement.BlockManager: The block deletion will start around 2016 Apr 05 02:02:29
16/04/05 02:02:29 INFO util.GSet: Computing capacity for map BlocksMap
16/04/05 02:02:29 INFO util.GSet: VM type= 64-bit
16/04/05 02:02:29 INFO util.GSet: 2.0% max memory 889 MB = 17.8 MB
16/04/05 02:02:29 INFO util.GSet: capacity = 2^21 = 2097152 entries
16/04/05 02:02:30 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false
16/04/05 02:02:30 INFO blockmanagement.BlockManager: defaultReplication= 3
16/04/05 02:02:30 INFO blockmanagement.BlockManager: maxReplication= 512
16/04/05 02:02:30 INFO blockmanagement.BlockManager: minReplication= 1
16/04/05 02:02:30 INFO blockmanagement.BlockManager: maxReplicationStreams= 2
16/04/05 02:02:30 INFO blockmanagement.BlockManager: shouldCheckForEnoughRacks= false
16/04/05 02:02:30 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000
16/04/05 02:02:30 INFO blockmanagement.BlockManager: encryptDataTransfer= false
16/04/05 02:02:30 INFO blockmanagement.BlockManager: maxNumBlocksToLog = 1000
16/04/05 02:02:30 INFO namenode.FSNamesystem: fsOwner= hadoop (auth:SIMPLE)
16/04/05 02:02:30 INFO namenode.FSNamesystem: supergroup= supergroup
16/04/05 02:02:30 INFO namenode.FSNamesystem: isPermissionEnabled = true
16/04/05 02:02:30 INFO namenode.FSNamesystem: HA Enabled: false
16/04/05 02:02:30 INFO namenode.FSNamesystem: Append Enabled: true
16/04/05 02:02:30 INFO util.GSet: Computing capacity for map INodeMap
16/04/05 02:02:30 INFO util.GSet: VM type= 64-bit
16/04/05 02:02:30 INFO util.GSet: 1.0% max memory 889 MB = 8.9 MB
16/04/05 02:02:30 INFO util.GSet: capacity= 2^20 = 1048576 entries
16/04/05 02:02:30 INFO namenode.FSDirectory: ACLs enabled? false
16/04/05 02:02:30 INFO namenode.FSDirectory: XAttrs enabled? true
16/04/05 02:02:30 INFO namenode.FSDirectory: Maximum size of an xattr: 16384
16/04/05 02:02:30 INFO namenode.NameNode: Caching file names occuring more than 10 times
16/04/05 02:02:30 INFO util.GSet: Computing capacity for map cachedBlocks
16/04/05 02:02:30 INFO util.GSet: VM type= 64-bit
16/04/05 02:02:30 INFO util.GSet: 0.25% max memory 889 MB = 2.2 MB
16/04/05 02:02:30 INFO util.GSet: capacity= 2^18 = 262144 entries
16/04/05 02:02:30 INFO namenode.FSNamesystem: dfs.namenode.safemode.threshold-pct = 0.9990000128746033
16/04/05 02:02:30 INFO namenode.FSNamesystem: dfs.namenode.safemode.min.datanodes = 0
16/04/05 02:02:30 INFOnamenode.FSNamesystem: dfs.namenode.safemode.extension= 30000
16/04/05 02:02:30 INFO metrics.TopMetrics: NNTop conf:
dfs.namenode.top.window.num.buckets = 10
16/04/05 02:02:30 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.num.users = 10
16/04/05 02:02:30 INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.windows.minutes = 1,5,25
16/04/05 02:02:30 INFO namenode.FSNamesystem: Retry cache on namenode is enabled
16/04/05 02:02:30 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cache entry expiry time is 600000 millis
16/04/05 02:02:30 INFO util.GSet: Computing capacity for map NameNodeRetryCache
16/04/05 02:02:30 INFO util.GSet: VM type= 64-bit
16/04/05 02:02:30 INFO util.GSet: 0.029999999329447746% max memory 889 MB = 273.1 KB
16/04/05 02:02:30 INFO util.GSet: capacity= 2^15 = 32768 entries
16/04/05 02:02:30 INFO namenode.FSImage: Allocated new BlockPoolId: BP-464058956-192.168.200.165-1459836150356
16/04/05 02:02:30 INFO common.Storage: Storage directory
 /home/hadoop/hadoop/hdfs/name has been successfully formatted.
16/04/05 02:02:30 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
16/04/05 02:02:30 INFO util.ExitUtil: Exiting with status 0
16/04/05 02:02:30 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at master1/192.168.200.165

************************************************************/


8.启停hadoop
 

#启动hadoop集群

注意事项:

1)各个集群节点之间能免密码登录彼此

2)确保各节点配置的myid和zoo.cfg里的一致,并先启动zookeeper集群

 

启动命令:sbin/start-all.sh 或者依次执行 start-dfs.sh 和 start-yarn.sh

[hadoop@master1 conf]$ start-all.sh
Starting namenodes on [master1]
master1: starting namenode, logging to
/home/hadoop/hadoop/logs/hadoop-hadoop-namenode-master1.out
slave2: starting datanode, logging to
/home/hadoop/hadoop/logs/hadoop-hadoop-datanode-slave2.out
master2: starting datanode,
logging to /home/hadoop/hadoop/logs/hadoop-hadoop-datanode-master2.out
master1: starting datanode, logging to
/home/hadoop/hadoop/logs/hadoop-hadoop-datanode-master1.out
slave1: starting datanode, logging to
/home/hadoop/hadoop/logs/hadoop-hadoop-datanode-slave1.out
Starting secondary namenodes [master2]
master2: starting secondarynamenode, logging to
/home/hadoop/hadoop/logs/hadoop-hadoop-secondarynamenode-master2.out
starting yarn daemons
starting resourcemanager, logging to
/home/hadoop/hadoop/logs/yarn-hadoop-resourcemanager-master1.out
slave2: starting nodemanager, logging to
/home/hadoop/hadoop/logs/yarn-hadoop-nodemanager-slave2.out
master2: starting nodemanager, logging to
/home/hadoop/hadoop/logs/yarn-hadoop-nodemanager-master2.out
master1: starting nodemanager, logging to
/home/hadoop/hadoop/logs/yarn-hadoop-nodemanager-master1.out
slave1: starting nodemanager, logging to
/home/hadoop/hadoop/logs/yarn-hadoop-nodemanager-slave1.out

查看相关守护进程 

NAMENODE(master1)

[hadoop@master1 logs]$ jps
12892 NameNode
13003 DataNode
13295 ResourceManager
13408 NodeManager
13826 QuorumPeerMain

SECONDARY NAMENODE(master2) 

[hadoop@master2 ~]$ jps
10162 SecondaryNameNode
10052 DataNode
10245 NodeManager
4045 QuorumPeerMain

DATANODE(slave1/slave2) 

[hadoop@slave1 ~]$ jps
13902 NodeManager
13789 DataNode
9331 QuorumPeerMain

 
[hadoop@slave2 ~]$ jps
13697 QuorumPeerMain
18324 DataNode
18440 NodeManager

#停止hadoop集群 

sbin /stop-all.sh

 

启动成功后可以访问web控制台查看集群信息:

NAMENODE:http://192.168.200.165:50070/

SECONDARY NAMENODE:http://192.168.200.166:9001

Nodes Of Cluster(YARN作业管理界面): http://192.168.200.166:8088

 

9.启动jobhistoryserver

因为kylin中需要MapReduce任务调度,所以需要启动jobhistoryserver

[hadoop@master1 logs]$ mr-jobhistory-daemon.sh start historyserver

查看jobhistoryserver守护进程 

[hadoop@master1 conf]$ jps
24419 JobHistoryServer

 


七、hbase 部署
 

1.解压缩hbase-1.1.4到hadoop家目录下,进入目录hbase

2.进入conf文件夹

3.修改hbase各配置文件如下:

 

hbase-env.sh

export JAVA_HOME=/jdk1.7.0_80

regionservers 

master1
master2
slave1
slave2

hbase-site.xml(已优化) 


        
                hbase.rootdir
                hdfs://master1:9000/hbase
        
        
                hbase.cluster.distributed
                true
        
        
                hbase.zookeeper.quorum
                master1,master2,slave1,slave2
        
        
                hbase.zookeeper.property.dataDir
                /zookeeper-3.4.6/data
        
        
                hbase.zookeeper.property.clientPort
                2181
        
        
                hbase.master.info.bindAddress
                master1
        
        
                hbase.master.info.port
                60010
        
        
                hbase.master.maxclockskew
                200000
                Time difference of regionserver from master
        
        
                hbase.coprocessor.user.region.classes
          org.apache.hadoop.hbase.coprocessor.AggregateImplementation
        
        
                hbase.regionserver.wal.codec
         org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec
        
        
                hbase.master.loadbalancer.class
             org.apache.phoenix.hbase.index.balancer.IndexLoadBalancer
        
        
                hbase.coprocessor.master.classes
             org.apache.phoenix.hbase.index.master.IndexMasterObserver
        
        
                phoenix.query.maxServerCacheBytes
                1073741824
        
        
                phoenix.query.maxGlobalMemoryPercentage
                70
                
        
                hbase.client.scanner.caching
                5000
                HBase客户端扫描缓存,对查询性能有很大帮助
        
        
                hbase.rpc.timeout
                360000000
        
        
                zookeeper.session.timeout
                60000
                zk超时时间
        
        
                hbase.regionserver.handler.count
                50
                用户表接受外来请求的线程数
        
        
                hbase.hregion.max.filesize
                107374182400
               单个ColumnFamily的region大小,若按照ConstantSizeRegionSplitPolicy策略,超过设置的该值则自动split>(100G)
        
        
                perf.hfile.block.cache.size
                0.2
                设置读写平衡
        
        
                hbase.regionserver.global.memstore.size
                0.3
                RegionServer进程block进行flush触发条件:该节点上所有region的memstore之和达到upperLimit*heapsize
        
        
                hbase.regionserver.global.memstore.lowerLimit
                0.3
                RegionServer进程触发flush的一个条件:该节点上所有region的memstore之和达到lowerLimit*heapsize
        
        
                hbase.zookeeper.property.tickTime
                6000
                Client端与zk发送心跳的时间间隔(6秒)
        
        
                hbase.hstore.blockingStoreFiles
                10
                设置读写平衡
        
        
                hbase.hstore.blockingWaitTime
                90000
                block的等待时间(90s)
        
        
                hbase.hregion.memstore.flush.size
                104857600
                memstore大小,当达到该值则会flush到外存设备(100M)
        
        
                hbase.hregion.memstore.mslab.enabled
                true
                是否开启mslab方案,减少因内存碎片导致的Full GC,提高整体性能
        
        
                hbase.regionserver.region.split.policy
                org.apache.hadoop.hbase.regionserver.ConstantSizeRegionSplitPolicy
                split操作默认的策略
        
        
                hbase.client.write.buffer
                8388608
                客户端写buffer,设置autoFlush为false时,当客户端写满buffer才flush(8m)
        
        
                hbase.hregion.memstore.block.multiplier
                4
                如果memstores超过了flushsize的multiplier倍则会阻塞客户端的写
        
        
                hbase.regionserver.regionSplitLimit
                150
                单台RegionServer上region数上限
        
        
                hbase.regionserver.maxlogs
                16
                如果memstores超过了flushsize的multiplier倍则会阻塞客户端的写
        

4.配置环境变量,优化内存 

export HBASE_HOME=/home/hadoop/hbase

export PATH=$PATH:$HBASE_HOME/bin

export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS -Xms1536m -Xmx2048m -Xmn1024m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70
-XX:PermSize=512m -XX:MaxPermSize=512m"

export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS
-Xms1536m -Xmx2048m -Xmn1024m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC
-XX:CMSInitiatingOccupancyFraction=70 -XX:PermSize=512m -XX:MaxPermSize=512m"

export HBASE_THRIFT_OPTS="$HBASE_THRIFT_OPTS -Xms1024m -Xmx2048m"

5.分发hbase文件夹到各个虚拟主机上的hadoop家目录上

scp -r  ~/hbase/ hadoop@master2:~
scp -r  ~/hbase/ hadoop@slave1:~
scp -r  ~/hbase/ hadoop@slave2:~

6.启停

bin/start-hbase.sh
bin/stop-hbase.sh

启动成功信息 

[hadoop@master1 hadoop]$ start-hbase.sh
master1: starting zookeeper, logging to
/home/hadoop/hbase/bin/../logs/hbase-hadoop-zookeeper-master1.out
slave2: starting zookeeper, logging to
/home/hadoop/hbase/bin/../logs/hbase-hadoop-zookeeper-slave2.out
master2: starting zookeeper, logging to
/home/hadoop/hbase/bin/../logs/hbase-hadoop-zookeeper-master2.out
slave1: starting zookeeper, logging to
/home/hadoop/hbase/bin/../logs/hbase-hadoop-zookeeper-slave1.out
starting master, logging to /home/hadoop/hbase/logs/hbase-hadoop-master-master1.out
slave2: starting regionserver, logging to
/home/hadoop/hbase/bin/../logs/hbase-hadoop-regionserver-slave2.out
master1: starting regionserver, logging to
/home/hadoop/hbase/bin/../logs/hbase-hadoop-regionserver-master1.out
master2: starting regionserver, logging to
/home/hadoop/hbase/bin/../logs/hbase-hadoop-regionserver-master2.out
slave1: starting regionserver, logging to
/home/hadoop/hbase/bin/../logs/hbase-hadoop-regionserver-slave1.out

查看相关守护进程 

HMASTER(master1)

[hadoop@master1 hadoop]$ jps
14230 HMaster
14379 HRegionServer

HREGIONSERVER(master2、slave1、slave2) 

[hadoop@ master2 ~]$ jps
10574 HRegionServer

[hadoop@slave1 ~]$ jps
14230 HRegionServer

[hadoop@slave2 ~]$ jps
18753 HRegionServer

 

出现的问题:集群节点的时间不同步

org.apache.hadoop.hbase.ClockOutOfSyncException

 

设置时间同步

#yum install ntpdate

# ntpdate 0.asia.pool.ntp.org

#rm -rf /etc/localtime
#ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

 

查看时间

date +%Y-%m-%d-%H:%M:%S

 

 

八、HIVE部署

仅在master1上部署即可

 

  1. 解压缩hive-2.0.0到hadoop家目录下,进入目录hive

 

  1. 进入conf文件夹

 

  1. 在mysql上创建元数据库hive

在master1上创建数据库hive(编码选latin,如果不选择latin,会出现问题)

 

#为hive数据库授权

grant all on hive.* to 'root'@'%' IDENTIFIED BY 'weidong' with grant option;

flush privilege;

#设置mysql数据库为任意IP可连接 

update user set host='%' where host='localhost';

 

4.修改hive各配置文件如下: 

hive-site.xml


         
                javax.jdo.option.ConnectionURL
               jdbc:mysql://master1:3306/hive?createDatabaseIfNotExist=true
         
         
                  javax.jdo.option.ConnectionDriverName
                   com.mysql.jdbc.Driver
                   驱动名
         
         
                  javax.jdo.option.ConnectionUserName
                   root
                   用户名
         
         
                   javax.jdo.option.ConnectionPassword
                   weidong
                   密码
         
         
                 datanucleus.schema.autoCreateTables
                   true
         
         
                   hive.metastore.warehouse.dir
                   hdfs://master1:9000/home/hadoop/hive/warehouse
                   数据路径(相对hdfs)
         
         
                   hive.exec.scratchdir
                   hdfs://master1:9000/home/hadoop/hive/warehouse
         
         
                   hive.querylog.location
                   /home/hadoop/hive/logs
         
         
                   hive.aux.jars.path
                   file:///home/hadoop/hbase/lib
         
         
                   hive.metastore.uris
                   thrift://master1:9083
                   运行hive得主机地址及端口
         

 

将日志配置打开

cp hive-log4j2.properties. template  hive-log4j2.properties
cp hive-exec-log4j2.properties.template  hive-exec-log4j2.properties

 

5.启动Hive

1)首先需要先启动元数据库

hive --service metastore &

 

启动成功信息 

2016-04-06T11:46:10,157 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:main(5876)) - Starting hive metastore on port 9083
2016-04-06T11:46:10,210 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:newRawStore(499)) - 0: Opening raw store with implementation class:org.apache.hadoop.hive.metastore.ObjectStore
2016-04-06T11:46:10,299 INFO  [main]:
metastore.ObjectStore (ObjectStore.java:initialize(318)) - ObjectStore, initialize called
2016-04-06T11:46:12,284 INFO  [main]:
metastore.ObjectStore (ObjectStore.java:getPMF(402)) - Setting MetaStore object pin classes with hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"
2016-04-06T11:46:15,345 INFO  [main]:
metastore.MetaStoreDirectSql (MetaStoreDirectSql.java:(142)) - Using direct SQL, underlying DB is MYSQL
2016-04-06T11:46:15,352 INFO  [main]:
metastore.ObjectStore (ObjectStore.java:setConf(301)) - Initialized ObjectStore
2016-04-06T11:46:16,051 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:createDefaultRoles_core(586)) - Added admin role in metastore
2016-04-06T11:46:16,058 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:createDefaultRoles_core(595)) - Added public role in metastore
2016-04-06T11:46:16,239 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:addAdminUsers_core(635)) - No user is added in admin role, since config is empty
2016-04-06T11:46:16,715 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:startMetaStore(6020)) - Starting DB backed MetaStore Server with SetUGI enabled
2016-04-06T11:46:16,729 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:startMetaStore(6077)) - Started the new metaserver on port [9083]...
2016-04-06T11:46:16,729 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:startMetaStore(6079)) - Options.minWorkerThreads = 200
2016-04-06T11:46:16,729 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:startMetaStore(6081)) - Options.maxWorkerThreads = 1000
2016-04-06T11:46:16,730 INFO  [main]:
metastore.HiveMetaStore (HiveMetaStore.java:startMetaStore(6083)) - TCP keepalive = true

 

2)启动hive客户端 

输入hive命令即可

[hadoop@master conf]$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in
[jar:file:/home/hadoop/hive/lib/hive-jdbc-2.1.0-SNAPSHOT-standalone.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in
[jar:file:/home/hadoop/hive/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in
[jar:file:/home/hadoop/spark/lib/spark-assembly-1.4.0-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
ERROR StatusLogger No log4j2 configuration file found. Using default configuration: logging only errors to the console.
Logging initialized using configuration in file:/home/hadoop/hive/conf/hive-log4j2.properties
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive>

 检验hive客户端下能否查看/创建表

6.停止HIVE

ps –aux | grep hive 查看hive目前的进程PID,用kill杀掉即可。

 

7.常用命令

hive> show databases;
OK
default
Time taken: 1.881 seconds, Fetched: 1 row(s)
hive> use default;
OK
Time taken: 0.081 seconds
hive> create table kylin_test(test_count int);
OK
Time taken: 2.9 seconds
hive> show tables;
OK
kylin_test
Time taken: 0.151 seconds, Fetched: 1 row(s)
hive> select * from kylin_test;
OK
Time taken: 0.318 seconds

在hive数据库里查询 

 

九、kylin部署

仅在master1上部署即可

 

1.了解kylin的两种二进制包

 

预打包的二进制安装包:apache-kylin-1.5.0-bin.tar.gz

特别二进制包:apache-kylin-1.5.0-HBase1.1.3-bin.tar.gz


说明:特别二进制包是一个在HBase 1.1+环境上编译的Kylin快照二进制包;安装它需要HBase 1.1.3或更高版本,否则之前版本中有一个已知的关于fuzzy key过滤器的缺陷,会导致Kylin查询结果缺少记录:HBASE-14269。此外还需注意的是,这不是一个正式的发布版(每隔几周rebase KYLIN 1.3.x 分支上最新的改动),没有经过完整的测试。

 

2.解压缩apache-kylin-1.5.0-HBase1.1.3-bin.tar.gz到hadoop家目录下,进入目录kylin

 

3.在/etc/profile里配置KYLIN环境变量和一个名为hive_dependency的变量

export KYLIN_HOME=/home/hadoop/kylin
export PATH=$PATH:$ KYLIN_HOME/bin
 
export hive_dependency=/home/hadoop/hive/conf:/home/hadoop/hive/lib/*:/home/hadoop/hive/hcatalog/share/hcatalog/hive-hcatalog-core-2.0.0.jar

 

这个配置需要在从节点master2,slave1,slave2上同时配置,因为kylin提交的任务交给mr后,hadoop集群将任务分发给从节点时,需要hive的依赖信息,如果不配置,则mr任务将报错为: hcatalogXXX找不到。 

 

4.修改kylin的启动脚本kylin.sh

 

1)显式声明 KYLIN_HOME
export KYLIN_HOME=/home/Hadoop/kylin
 
2)在HBASE_CLASSPATH_PREFIX中显示增加$hive_dependency依赖 
export HBASE_CLASSPATH_PREFIX=${tomcat_root}/bin/bootstrap.jar:${tomcat_root}/bin/tomcat-juli.jar:${tomcat_root}/lib/*:$hive_dependency:$HBASE_CLASSPATH_PREFIX

5.检查环境是否设置成功

[hadoop@master1 conf]$ check-env.sh
KYLIN_HOME is set to /home/hadoop/kylin

 

6.进入conf文件夹,修改kylin各配置文件如下:

kylin.properties

kylin.owner=[email protected]
kylin.rest.servers=master1:7070

kylin.hdfs.working.dir=/home/hadoop/kylin/kylin_hdfs_working_dir
kylin.job.remote.cli.working.dir=/home/hadoop/kylin/kylin_job_working_dir

 #定义kylin用于MR jobs的job.jar包和hbase的协处理jar包,用于提升性能。

kylin.job.jar=/home/hadoop/kylin/lib/kylin-job-1.5.0-SNAPSHOT.jar
kylin.coprocessor.local.jar=/home/hadoop/kylin/lib/kylin-coprocessor-1.5.0-SNAPSHOT.jar

 

将kylin_hive_conf.xml和kylin_job_conf.xml的副本数设置为4


  dfs.replication
  4
  Block replication

7.启动和停止kylin 

 

#确认必须启动的服务:

1)hadoop2的hdfs/yarn/jobhistory服务

    start-dfs.sh

    start-yarn.sh

    mr-jobhistory-daemon.sh start historyserver

2)hive 元数据库:hive --service metastore &

3)zookeeper

4)hbase :start-hbase.sh

 

#检查hive和hbase的依赖

[hadoop@master1 kylin]$ find-hive-dependency.sh
[hadoop@master1 kylin]$ find-hbase-dependency.sh

 

#启动和停止kylin的命令如下: 

[hadoop@master1 kylin]$ kylin.sh start
[hadoop@master1 kylin]$ kylin.sh stop

 


Web访问地址
 

http://192.168.200.165:7070/kylin/login

默认的登录username/password 是 ADMIN/KYLIN.

 

 

十、kylin测试

1.测试Kylin自带的sample

Kylin提供一个自动化脚本来创建测试CUBE,这个脚本也会自动创建出相应的hive数据表。

 

运行sample例子的步骤:

 

① 运行${KYLIN_HOME}/bin/sample.sh脚本

[hadoop@master1 ~]$ sample.sh

 

关键提示信息:

KYLIN_HOME is set to /home/hadoop/kylin
Going to create sample tables in hive...
Sample hive tables are created successfully; Going to create sample cube...
Sample cube is created successfully in project 'learn_kylin'; Restart Kylin server or reload the metadata from web UI to see the change.

 

#在MYSQL中查看此sample创建了哪几张表

# select DB_ID,OWNER,SD_ID,TBL_NAME from TBLS;

 #在hive客户端查看创建的表和数据量(1w条)

 

hive> show tables;
OK
kylin_cal_dt
kylin_category_groupings
kylin_sales
Time taken: 1.835 seconds, Fetched: 3 row(s)

hive> select count(*) from kylin_sales;
OK
10000
Time taken: 65.351 seconds, Fetched: 1 row(s)

 

② 重启kylin server 刷新缓存 

 

[hadoop@master1 ~]$ kylin.sh stop
[hadoop@master1 ~]$ kylin.sh start

③ 使用默认的用户名密码ADMIN/KYLIN访问192.168.200.165:7070/kylin 

进入控制台后选择project为learn_kylin的那个项目。

 ④ 选择测试cube “kylin_sales_cube”,点击“Action”-“Build”,选择一个2014-01-01以后的日期,这是为了选择全部的10000条测试记录。

 选择一个生成日期

 点击提交会出现重建任务成功提交的提示

 ⑤ 在监控台查看这个任务的执行进度,直到这个任务100%完成。

 任务完成

 切换到model控制台会发现cube的状态成为了ready,表示可以执行sql查询了

 执行过程中,在hive里会生成临时表,待任务100%完成后,这张表会自动删除

kylin_intermediate_kylin_sales_cube_desc_20120201000000_20120201000000

 执行过程中,在hbase里会生成永久的计算结果表,如:

KYLIN_PTQIXMC64A

 如果build了两个以上的segment。还可以执行merge操作:

 完成Merge任务

 这时候HBASE里面不同的Segment表示的多张表也同时合并成了一张表,以节省磁盘空间

 Build过程中出现的问题:

 当任务执行到第五步:创建HTable的时候,报错说创建的表不可用。

最终导致整个任务的失败 ERROR

 

2016-04-07 12:40:57,823 ERROR [pool-7-thread-5] steps.CubeHTableUtil:135 : Failed to create HTable

java.lang.IllegalArgumentException: table KYLIN_9USQAHQQXC created, but is not available due to some reasons

         at com.google.common.base.Preconditions.checkArgument(Preconditions.java:92)

         at org.apache.kylin.storage.hbase.steps.CubeHTableUtil.createHTable(CubeHTableUtil.java:132)

         at org.apache.kylin.storage.hbase.steps.CreateHTableJob.run(CreateHTableJob.java:104)

         at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)

         at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:84)

         at org.apache.kylin.engine.mr.common.HadoopShellExecutable.doWork(HadoopShellExecutable.java:60)

         at org.apache.kylin.job.execution.AbstractExecutable.execute(AbstractExecutable.java:114)

         at org.apache.kylin.job.execution.DefaultChainedExecutable.doWork(DefaultChainedExecutable.java:50)

         at org.apache.kylin.job.execution.AbstractExecutable.execute(AbstractExecutable.java:114)

         at org.apache.kylin.job.impl.threadpool.DefaultScheduler$JobRunner.run(DefaultScheduler.java:124)

         at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)

         at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)

         at java.lang.Thread.run(Thread.java:745)

 

 

在社区提问:

http://apache-kylin.74782.x6.nabble.com/an-error-occurred-when-build-a-sample-cube-at-step-5-create-HTable-td4102.html 

 

出错的原因:

因为在kylin中默认使用了snappy压缩算法导致的。

HDFS报错日志:

2016-04-12 12:05:05,726 ERROR [RS_OPEN_REGION-slave2:16020-0]

handler.OpenRegionHandler: Failed open of

region=KYLIN_VKRC32OKFP,,1460433926913.73fb906719a75b2733f046e87fbe8105., starting to roll back the global memstore size.

org.apache.hadoop.hbase.DoNotRetryIOException: Compression algorithm 'snappy' previously failed test.

  at org.apache.hadoop.hbase.util.CompressionTest.testCompression

(CompressionTest.java:91)

         at org.apache.hadoop.hbase.regionserver.HRegion.checkCompressionCodecs

(HRegion.java:6300)

         at org.apache.hadoop.hbase.regionserver.HRegion.openHRegion(HRegion.java:6251)

         at org.apache.hadoop.hbase.regionserver.HRegion.openHRegion(HRegion.java:6218)

         at org.apache.hadoop.hbase.regionserver.HRegion.openHRegion(HRegion.java:6189)

         at org.apache.hadoop.hbase.regionserver.HRegion.openHRegion(HRegion.java:6145)

         at org.apache.hadoop.hbase.regionserver.HRegion.openHRegion(HRegion.java:6096)

         at org.apache.hadoop.hbase.regionserver.handler.OpenRegionHandler.openRegion

(OpenRegionHandler.java:362)

         at org.apache.hadoop.hbase.regionserver.handler.OpenRegionHandler.process

(OpenRegionHandler.java:129)

         at org.apache.hadoop.hbase.executor.EventHandler.run(EventHandler.java:129)

         at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)

         at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)

         at java.lang.Thread.run(Thread.java:745)

2016-04-12 12:05:05,727 INFO  [RS_OPEN_REGION-slave2:16020-0]

coordination.ZkOpenRegionCoordination: Opening of region {ENCODED =>

73fb906719a75b2733f046e87fbe8105, NAME =>

'KYLIN_VKRC32OKFP,,1460433926913.73fb906719a75b2733f046e87fbe8105.', STARTKEY => '', ENDKEY => '\x00\x01'} failed, transitioning from OPENING to FAILED_OPEN in ZK, expecting version 1

2016-04-12 12:05:05,775 INFO  [PriorityRpcServer.handler=18,queue=0,port=16020] regionserver.RSRpcServices: Open

KYLIN_VKRC32OKFP,\x00\x01,1460433926913.06978b9fb1e423563a5aae7e1df044d8.

 

解决方法:禁用压缩或者使用LZO作为压缩算法

 

官网给出的禁用压缩算法的方法如下:

To disable compressing MR jobs you need to modify

$KYLIN_HOME/conf/kylin_job_conf.xml by removing all configuration entries related to compression(Just grep the keyword “compress”). To disable compressing hbase tables you need to open $KYLIN_HOME/conf/kylin.properties and remove the line starting with kylin.hbase.default.compression.codec.

 

 

⑥ 切换到Insight 窗口执行SQL语句,例如:

select part_dt, sum(price) as total_selled, count(distinct seller_id) as sellers from kylin_sales group by part_dt order by part_dt;

 

在Kylin中执行如上的sql统计只用了0.46s (十次取平均值)

 

 

在Hive里执行同一条sql统计语句,花费时间高达136秒

hive> select part_dt, sum(price) as total_selled, count(distinct seller_id) as sellers from kylin_sales group by part_dt order by part_dt;

Time taken: 136.489 seconds, Fetched: 731 row(s)

 

可见:kylin执行这条sql明显提升了效率。

 

其他测试语句:

 

①       select * from kylin_sales;(1s内)

 

②    各个时间段内的销售额及购买量(0.39秒)

select part_dt, sum(price) as total_selled, count(distinct seller_id) as sellers

from kylin_sales

group by part_dt

order by part_dt;

 

③    查询某一时间的销售额及购买量(0.40秒)

select part_dt, sum(price) as total_selled, count(distinct seller_id) as sellers from kylin_sales

where part_dt = '2014-01-01'

group by part_dt;

发现报错:

Error while compiling generated Java code:

public static class Record3_0 implements java.io.Serializable {           

public java.math.BigDecimal f0;

    public boolean f1;

public org.apache.kylin.common.hll.HyperLogLogPlusCounter f2;         

public Record3_0(java.math.BigDecimal f0, boolean f1, ...

 

这是因为part_dt是date类型,在解析string到date的时候出问题,应将sql语句改为:

select part_dt, sum(price) as total_selled, count(distinct seller_id) as sellers

from kylin_sales

where part_dt between '2014-01-01' and '2014-01-01'

group by part_dt;

或者

select part_dt, sum(price) as total_selled, count(distinct seller_id) as sellers

from kylin_sales

where part_dt = date '2014-01-01'

group by part_dt;

 

④上面查询只用到了fact table,而没有用到lookup table。如果查询各个时间段所有二级商品类型的销售额,则需要fact table与lookup table做inner join(1.36s)

select fact.part_dt, lookup.CATEG_LVL2_NAME, count(distinct seller_id) as sellers

from kylin_sales fact

inner join KYLIN_CATEGORY_GROUPINGS lookup

on fact.LEAF_CATEG_ID = lookup.LEAF_CATEG_ID and fact.LSTG_SITE_ID = lookup.SITE_ID

group by fact.part_dt, lookup.CATEG_LVL2_NAME

order by fact.part_dt desc

你可能感兴趣的:([kylin] 部署kylin服务)