Python:常用模块

collections模块

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。
1、namedtuple:生成可以使用名字来访问元素内容的tuple
2、deque:双端队列,可以快速的从另外一侧追加和推出对象
3、Counter:计数器,猪獒用来技术
4、orderdDict:有序字典
5、defaultdict:带有默认值得字典

namedtuple

我们知道tuple可以表示不变集合,列如,一个点的二维坐标就可以表示成:

>>>p = (1,2)

但是,看到(1,2),很难看出这个tuple是用来表示一个坐标的。
这是,namedtuple就派上了用场:

>>>from collections import namedtuple
>>>Point = namedtuple('Point',['x', 'y'])
>>>p = Point(1,2)
>>>p.x
1
>>>p.y
2

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

#namedtuple('名称',[属性list])
Circle = namedtuple('Circle',['x', 'y', 'r'])

deque

使用list存储数据时,安索引访问元素很快,但是插入和是删除元素就会很慢,因为list是线性存储,数据 量大的时候,插入和删除效率很低。

deque是为了高效率实现插入和删除造作的双向列表 ,是哦用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict:

>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']

defaultdict

有如下之集合 [11,22,33,44,55,66,77,88,99...] ,将所有大于66的值保存至字典的第一个key中,将小于66的值保存于第二个key的值中。

即:{‘key1’: 大于66,‘key2’: 小于66}

原生种子点解决方法:

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = {}

for value in  values:
    if value>66:
        if my_dict.has_key('k1'):
            my_dict['k1'].append(value)
        else:
            my_dict['k1'] = [value]
    else:
        if my_dict.has_key('k2'):
            my_dict['k2'].append(value)
        else:
            my_dict['k2'] = [value]

defaultdict字典解决方法:

from collections import defaultdict

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = defaultdict(list)

for value in  values:
    if value>66:
        my_dict['k1'].append(value)
    else:
        my_dict['k2'].append(value)

使用dict时,如果引用的Key不存在,就会跑出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'

Counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})

时间模块

和时间有关系的我们就要用到时间模块。在使用模块之前,应该先导入这个模块。

常用方法

1.time.sleep(secs)
(线程)推迟指定的时间运行。单位为秒。
2.time.time()
获取当前时间戳

表示时间的三种方式

在Python中,通常由这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串。
(1)时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
(2)格式化的时间字符串(Format String):'1999-12-16'

%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身

(3)元组(struct_time):struct_time元组共有9个元素:(年、月、日、时、分、秒、一年中第几周、一年中第几天等)

索引(Index) 属性(Attribute) 值(Values)
0 tm_year(年) 比如2011
1 tm_mon(月) 1 - 12
2 tm_mday(日) 1 - 31
3 tm_hour(时) 0 - 23
4 tm_min(分) 0 - 59
5 tm_sec(秒) 0 - 60
6 tm_wday(weekday) 0 - 6(0表示周一)
7 tm_yday(一年中的第几天) 1 - 366
8 tm_isdst(是否是夏令时) 默认为0
#导入时间模块
>>>import time

#时间戳
>>>time.time()
1500875844.800804

#时间字符串
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
>>>time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04'

#时间元组:localtime将一个时间戳转换为当前时区的struct_time
time.localtime()
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24,
          tm_hour=13, tm_min=59, tm_sec=37, 
                 tm_wday=0, tm_yday=205, tm_isdst=0)

小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的

几种格式之间的相互转换

Python:常用模块_第1张图片
ZVHHA97HXV(9VLURSLF3LK4.png
#时间戳-->结构化时间
#time.gmtime(时间戳)    #UTC时间,与英国伦敦当地时间一致
#time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 
>>>time.gmtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)
>>>time.localtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)

#结构化时间-->时间戳 
#time.mktime(结构化时间)
>>>time_tuple = time.localtime(1500000000)
>>>time.mktime(time_tuple)
1500000000.0
#结构化时间-->字符串时间
#time.strftime("格式定义","结构化时间")  结构化时间参数若不传,则显示当前时间
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 14:55:36'
>>>time.strftime("%Y-%m-%d",time.localtime(1500000000))
'2017-07-14'

#字符串时间-->结构化时间
#time.strptime(时间字符串,字符串对应格式)
>>>time.strptime("2017-03-16","%Y-%m-%d")
time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1)
>>>time.strptime("07/24/2017","%m/%d/%Y")
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)
Python:常用模块_第2张图片
2.png
#结构化时间 --> %a %b %d %H:%M:%S %Y串
#time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
>>>time.asctime(time.localtime(1500000000))
'Fri Jul 14 10:40:00 2017'
>>>time.asctime()
'Mon Jul 24 15:18:33 2017'

#时间戳 --> %a %b %d %H:%M:%S %Y串
#time.ctime(时间戳)  如果不传参数,直接返回当前时间的格式化串
>>>time.ctime()
'Mon Jul 24 15:19:07 2017'
>>>time.ctime(1500000000)
'Fri Jul 14 10:40:00 2017' 
import time
true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))
time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))
dif_time=time_now-true_time
struct_time=time.gmtime(dif_time)
print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1,
                                       struct_time.tm_mday-1,struct_time.tm_hour,
                                       struct_time.tm_min,struct_time.tm_sec))

random模块

>>> import random
#随机小数
>>> random.random()      # 大于0且小于1之间的小数
0.7664338663654585
>>> random.uniform(1,3) #大于1小于3的小数
1.6270147180533838
#恒富:发红包

#随机整数
>>> random.randint(1,5)  # 大于等于1且小于等于5之间的整数
>>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数


#随机选择一个返回
>>> random.choice([1,'23',[4,5]])  # #1或者23或者[4,5]
#随机选择多个返回,返回的个数为函数的第二个参数
>>> random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合
[[4, 5], '23']


#打乱列表顺序
>>> item=[1,3,5,7,9]
>>> random.shuffle(item) # 打乱次序
>>> item
[5, 1, 3, 7, 9]
>>> random.shuffle(item)
>>> item
[5, 9, 7, 1, 3]

生成随机验证码

import random

def v_code():

    code = ''
    for i in range(5):

        num=random.randint(0,9)
        alf=chr(random.randint(65,90))
        add=random.choice([num,alf])
        code="".join([code,str(add)])

    return code

print(v_code())

os模块

os模块是与操作系统交互的一个接口

os.makedirs('dirname1/dirname2') 可生成多层递归目录
os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove() 删除一个文件
os.rename("oldname","newname") 重命名文件/目录
os.stat('path/filename') 获取文件/目录信息

os.system("bash command") 运行shell命令,直接显示
os.popen("bash command).read() 运行shell命令,获取执行结果
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd

os.path
os.path.abspath(path) 返回path规范化的绝对路径
os.path.split(path) 将path分割成目录和文件名二元组返回
os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素
os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即>os.path.split(path)的第二个元素
os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path) 如果path是绝对路径,返回True
os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path) 返回path所指向的文件或者目录的最后访问时间
os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间
os.path.getsize(path) 返回path的大小

注意:os.stat('path/filename') 获取文件/目录信息 的结构说明

stat 结构:

st_mode: inode 保护模式
st_ino: inode 节点号。
st_dev: inode 驻留的设备。
st_nlink: inode 的链接数。
st_uid: 所有者的用户ID。
st_gid: 所有者的组ID。
st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。
st_atime: 上次访问的时间。
st_mtime: 最后一次修改的时间。
st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。

os模块的属性

os.sep    输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep    输出当前平台使用的行终止符,win下为"\r\n",Linux下为"\n"
os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'

sys模块

sys模块是与python解释器交互的一个接口

sys.argv 命令行参数List,第一个元素是程序本身路径
sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1)
sys.version 获取Python解释程序的版本信息
sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform 返回操作系统平台名称

异常处理和status

import sys
try:
    sys.exit(1)
except SystemExit as e:
    print(e)

序列化模块

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。

为什么要有序列化模块?
比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)

序列化的目的

1、以某种存储形式使自定义对象持久化。
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。


Python:常用模块_第3张图片
3.png

json

json模块提供了四个功能:dumps、dump、loads、load

loads 和 dumps

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic)  #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic)  # {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的

dic2 = json.loads(str_dic)  #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2)  # {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}


list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 
print(type(str_dic),str_dic) # [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) # [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]

load 和 dump

import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f)  #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close()

f = open('json_file')
dic2 = json.load(f)  #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)

ensure_ascii 关键字参数

import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()

其他参数说明

Serialize obj to a JSON formatted str.(字符串表示的json对象) 
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key 
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。) 
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse). 
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity). 
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json 
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。 
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. 
sort_keys:将数据根据keys的值进行排序。 
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

json 的格式化输出

import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)

pickle

json & pickle 模块是用来序列化的两个模块
json:用于字符串和python数据类型间进行转换
pickle:用于python特有的类型和python的数据类型间进行转换

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load(不仅可以序列化字典,列表....还可以吧python中任意的数据类型序列化)

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic)  #一串二进制内容

dic2 = pickle.loads(str_dic)
print(dic2)    #字典

import time
struct_time  = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close()

f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)

hashlib模块

算法介绍

Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。

什么是摘要算法呢?摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。

摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过。

摘要算法之所以能指出数据是否被篡改过,就是因为摘要函数是一个单向函数,计算f(data)很容易,但通过digest反推data却非常困难。而且,对原始数据做一个bit的修改,都会导致计算出的摘要完全不同。

我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值:

import hashlib
 
md5 = hashlib.md5()
md5.update('how to use md5 in python hashlib?')
print md5.hexdigest()

计算结果如下:
d26a53750bc40b38b65a520292f69306

如果数据量很大,可以分块多次调用update(),最后计算的结果是一样的:

md5 = hashlib.md5()
md5.update('how to use md5 in ')
md5.update('python hashlib?')
print md5.hexdigest()

MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示。另一种常见的摘要算法是SHA1,调用SHA1和调用MD5完全类似:

import hashlib
 
sha1 = hashlib.sha1()
sha1.update('how to use sha1 in ')
sha1.update('python hashlib?')
print sha1.hexdigest()

SHA1的结果是160 bit字节,通常用一个40位的16进制字符串表示。比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法越慢,而且摘要长度更长。

configparser模块

该模块适用于配置文件的格式与windows ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数(键=值)。

创建文件

[DEFAULT]
ServerAliveInterval = 45
Compression = yes
CompressionLevel = 9
ForwardX11 = yes
  
[bitbucket.org]
User = hg
  
[topsecret.server.com]
Port = 50022
ForwardX11 = no

如果想用python 生成一个这样的文档怎么做呢?

import configparser

config = configparser.ConfigParser()

config["DEFAULT"] = {'ServerAliveInterval': '45',
                      'Compression': 'yes',
                     'CompressionLevel': '9',
                     'ForwardX11':'yes'
                     }

config['bitbucket.org'] = {'User':'hg'}

config['topsecret.server.com'] = {'Host Port':'50022','ForwardX11':'no'}

with open('example.ini', 'w') as configfile:

   config.write(configfile)

查找文件

import configparser

config = configparser.ConfigParser()

#---------------------------查找文件内容,基于字典的形式

print(config.sections())        #  []

config.read('example.ini')

print(config.sections())        #   ['bitbucket.org', 'topsecret.server.com']

print('bytebong.com' in config) # False
print('bitbucket.org' in config) # True


print(config['bitbucket.org']["user"])  # hg

print(config['DEFAULT']['Compression']) #yes

print(config['topsecret.server.com']['ForwardX11'])  #no


print(config['bitbucket.org'])          #

for key in config['bitbucket.org']:     # 注意,有default会默认default的键
    print(key)

print(config.options('bitbucket.org'))  # 同for循环,找到'bitbucket.org'下所有键

print(config.items('bitbucket.org'))    #找到'bitbucket.org'下所有键值对

print(config.get('bitbucket.org','compression')) # yes       get方法Section下的key对应的value

增删改操作

import configparser

config = configparser.ConfigParser()

config.read('example.ini')

config.add_section('yuan')



config.remove_section('bitbucket.org')
config.remove_option('topsecret.server.com',"forwardx11")


config.set('topsecret.server.com','k1','11111')
config.set('yuan','k2','22222')

config.write(open('new2.ini', "w"))

logging模块

函数的简单配置

import logging  
logging.debug('debug message')  
logging.info('info message')  
logging.warning('warning message')  
logging.error('error message')  
logging.critical('critical message') 

默认情况下Python的logging模块将日志打印到了标准输出中,且只显示了大于等于WARNING级别的日志,这说明默认的日志级别设置为WARNING(日志级别等级CRITICAL > ERROR > WARNING > INFO > DEBUG),默认的日志格式为日志级别:Logger名称:用户输出消息。

灵活配置日志级别,日志格式,输出位置:

import logging  
logging.basicConfig(level=logging.DEBUG,  
                    format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',  
                    datefmt='%a, %d %b %Y %H:%M:%S',  
                    filename='/tmp/test.log',  
                    filemode='w')  
  
logging.debug('debug message')  
logging.info('info message')  
logging.warning('warning message')  
logging.error('error message')  
logging.critical('critical message')

配置参数

logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:

filename:用指定的文件名创建FiledHandler,这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件(f=open(‘test.log’,’w’)),默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。

format参数中可能用到的格式化串:
%(name)s Logger的名字
%(levelno)s 数字形式的日志级别
%(levelname)s 文本形式的日志级别
%(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
%(filename)s 调用日志输出函数的模块的文件名
%(module)s 调用日志输出函数的模块名
%(funcName)s 调用日志输出函数的函数名
%(lineno)d 调用日志输出函数的语句所在的代码行
%(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d 线程ID。可能没有
%(threadName)s 线程名。可能没有
%(process)d 进程ID。可能没有
%(message)s用户输出的消息

logger对象配置

import logging

logger = logging.getLogger()
# 创建一个handler,用于写入日志文件
fh = logging.FileHandler('test.log',encoding='utf-8') 

# 再创建一个handler,用于输出到控制台 
ch = logging.StreamHandler() 
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setLevel(logging.DEBUG)

fh.setFormatter(formatter) 
ch.setFormatter(formatter) 
logger.addHandler(fh) #logger对象可以添加多个fh和ch对象 
logger.addHandler(ch) 

logger.debug('logger debug message') 
logger.info('logger info message') 
logger.warning('logger warning message') 
logger.error('logger error message') 
logger.critical('logger critical message')

logging库提供了多个组件:Logger、Handler、Filter、Formatter。Logger对象提供应用程序可直接使用的接口,Handler发送日志到适当的目的地,Filter提供了过滤日志信息的方法,Formatter指定日志显示格式。另外,可以通过:logger.setLevel(logging.Debug)设置级别,当然,也可以通过fh.setLevel(logging.Debug)单对文件流设置某个级别。

你可能感兴趣的:(Python:常用模块)