个人的一些碎碎念:
聚类,直觉就能想到kmeans聚类,另外还有一个hierarchical clustering,但是单细胞里面都用得不多,为什么?印象中只有一个scoring model是用kmean进行粗聚类。(10x就是先做PCA,再用kmeans聚类的)
鉴于单细胞的教程很多,也有不下于10种针对单细胞的聚类方法了。
降维往往是和聚类在一起的,所以似乎有点难以区分。
PCA到底是降维、聚类还是可视化的方法,t-SNE呢?
其实稍微思考一下,PCA、t-SNE还有下面的diffusionMap,都是一种降维方法。区别就在于PCA是完全的线性变换得到PC,t-SNE和diffusionMap都是非线性的。
为什么降维?因为我们特征太多了,基因都是万级的,降维之后才能用kmeans啥的。其次就是,降维了才能可视化!我们可视化的最高维度就是三维,几万维是无法可视化的。但paper里,我们最多选前两维,三维在平面上的效果还不如二维。
聚类策略:
聚类还要什么策略?不就是选好特征之后,再选一个k就得到聚类的结果了吗?是的,常规分析确实没有什么高深的东西。
但通常我们不是为了聚类而聚类,我们的结果是为生物学问题而服务的,如果从任何角度都无法解释你的聚类结果,那你还聚什么类,总不可能在paper里就写我们聚类了,得到了一些marker,然后就没了下文把!
什么问题?
什么叫针对问题的聚类呢?下面这篇文章就是针对具体问题的聚类。先知:我们知道我们细胞里有些污染的细胞,如何通过聚类将他们识别出来?
这种具体的问题就没法通过跑常规流程来解决了,得想办法!
Dimensionality reduction.
Throughout the manuscript we use diffusion maps, a non-linear dimensionality reduction technique37. We calculate a cell-to-cell distance matrix using 1 - Pearson correlation and use the diffuse function of the diffusionMap R package with default parameters to obtain the first 50 DMCs. To determine the significant DMCs, we look at the reduction of eigenvalues associated with DMCs. We determine all dimensions with an eigenvalue of at least 4% relative to the sum of the first 50 eigenvalues as significant, and scale all dimensions to have mean 0 and standard deviation of 1.
有点超前(另类),用diffusionMap来降维,计算了细胞-细胞的距离,得到50个DMC,鉴定出显著的DMC,scale一下。
Initial clustering of all cells.
To identify contaminating cell populations and assess overall heterogeneity in the data, we clustered all single cells. We first combined all Drop-seq samples and normalized the data (21,566 cells, 10,791 protein-coding genes detected in at least 3 cells and mean UMI at least 0.005) using regularized negative binomial regression as outlined above (correcting for sequencing depth related factors and cell cycle). We identified 731 highly variable genes; that is, genes for which the z-scored standard deviation was at least 1. We used the variable genes to perform dimensionality reduction using diffusion maps as outlined above (with relative eigenvalue cutoff of 2%), which returned 10 significant dimensions.
For clustering we used a modularity optimization algorithm that finds community structure in the data with Jaccard similarities (neighbourhood size 9, Euclidean distance in diffusion map coordinates) as edge weights between cells38. With the goal of over-clustering the data to identify rare populations, the small neighbourhood size resulted in 15 clusters, of which two were clearly separated from the rest and expressed marker genes expected from contaminating cells (Neurod6 from excitatory neurons, Igfbp7 from epithelial cells). These cells represent rare cellular contaminants in the original sample (2.6% and 1%), and were excluded from further analysis, leaving 20,788 cells.
鉴定出了highly variable genes,还是为了降噪(其实特征选择可以很自由,只是好杂志偏爱这种策略,你要是纯手动选,人家就不乐意了)。
Jaccard相似度,来聚类。
要想鉴定rare populations,就必须over-clustering!!!居然将k设置为15,然后通过marker来筛选出contaminating cells。
确实从中学习了很多,自己手写代码就是不一样,比纯粹的跑软件要强很多。
# cluster cells and remove contaminating populations cat('Doing initial clustering\n') cl <- cluster.the.data.simple(cm, expr, 9, seed=42) md$init.cluster <- cl$clustering # detection rate per cluster for some marker genes goi <- c('Igfbp7', 'Col4a1', 'Neurod2', 'Neurod6') det.rates <- apply(cm[goi, ] > 0, 1, function(x) aggregate(x, by=list(cl$clustering), FUN=mean)$x) contam.clusters <- sort(unique(cl$clustering))[apply(det.rates > 1/3, 1, any)] use.cells <- !(cl$clustering %in% contam.clusters) cat('Of the', ncol(cm), 'cells', sum(!use.cells), 'are determined to be part of a contaminating cell population.\n') cm <- cm[, use.cells] expr <- expr[, use.cells] md <- md[use.cells, ]
# for clustering # ev.red.th: relative eigenvalue cutoff of 2% dim.red <- function(expr, max.dim, ev.red.th, plot.title=NA, do.scale.result=FALSE) { cat('Dimensionality reduction via diffusion maps using', nrow(expr), 'genes and', ncol(expr), 'cells\n') if (sum(is.na(expr)) > 0) { dmat <- 1 - cor(expr, use = 'pairwise.complete.obs') } else { # distance 0 <=> correlation 1 dmat <- 1 - cor(expr) } max.dim <- min(max.dim, nrow(dmat)/2) dmap <- diffuse(dmat, neigen=max.dim, maxdim=max.dim) ev <- dmap$eigenvals # relative eigenvalue cutoff of 2%, something like PCA ev.red <- ev/sum(ev) evdim <- rev(which(ev.red > ev.red.th))[1] if (is.character(plot.title)) { # Eigenvalues, We observe a substantial eigenvalue drop-off after the initial components, demonstrating that the majority of the variance is captured in the first few dimensions. plot(ev, ylim=c(0, max(ev)), main = plot.title) abline(v=evdim + 0.5, col='blue') } evdim <- max(2, evdim, na.rm=TRUE) cat('Using', evdim, 'significant DM coordinates\n') colnames(dmap$X) <- paste0('DMC', 1:ncol(dmap$X)) res <- dmap$X[, 1:evdim] if (do.scale.result) { res <- scale(dmap$X[, 1:evdim]) } return(res) } # jaccard similarity # rows in 'mat' are cells jacc.sim <- function(mat, k) { # generate a sparse nearest neighbor matrix nn.indices <- get.knn(mat, k)$nn.index j <- as.numeric(t(nn.indices)) i <- ((1:length(j))-1) %/% k + 1 nn.mat <- sparseMatrix(i=i, j=j, x=1) rm(nn.indices, i, j) # turn nn matrix into SNN matrix and then into Jaccard similarity snn <- nn.mat %*% t(nn.mat) snn.summary <- summary(snn) snn <- sparseMatrix(i=snn.summary$i, j=snn.summary$j, x=snn.summary$x/(2*k-snn.summary$x)) rm(snn.summary) return(snn) } cluster.the.data.simple <- function(cm, expr, k, sel.g=NA, min.mean=0.001, min.cells=3, z.th=1, ev.red.th=0.02, seed=NULL, max.dim=50) { if (all(is.na(sel.g))) { # no genes specified, use most variable genes # filter min.cells and min.mean # cm only for filtering goi <- rownames(expr)[apply(cm[rownames(expr), ]>0, 1, sum) >= min.cells & apply(cm[rownames(expr), ], 1, mean) >= min.mean] # gene sum sspr <- apply(expr[goi, ]^2, 1, sum) # scale the expression of all genes, only select the gene above z.th # need to plot the hist sel.g <- goi[scale(sqrt(sspr)) > z.th] } cat(sprintf('Selected %d variable genes\n', length(sel.g))) sel.g <- intersect(sel.g, rownames(expr)) cat(sprintf('%d of these are in expression matrix.\n', length(sel.g))) if (is.numeric(seed)) { set.seed(seed) } dm <- dim.red(expr[sel.g, ], max.dim, ev.red.th, do.scale.result = TRUE) sim.mat <- jacc.sim(dm, k) gr <- graph_from_adjacency_matrix(sim.mat, mode='undirected', weighted=TRUE, diag=FALSE) cl <- as.numeric(membership(cluster_louvain(gr))) results <- list() results$dm <- dm results$clustering <- cl results$sel.g <- sel.g results$sim.mat <- sim.mat results$gr <- gr cat('Clustering table\n') print(table(results$clustering)) return(results) }