1. 复合函数操作符
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
Prelude> (.) ((+) 5) ((*) 2) 4
13
所以(.)操作符的作用,是将4作为参数传递给((*) 2)函数,再将结果传递给((+) 5)函数。
这就是数学里面的复合函数:
f(x) = 2x
g(x) = x + 5
g(f(x)) = g(2x) = (2x) + 5 = 2x + 5
g(f(4)) = 2*4 + 5 = 13
2. Functor
194 {- | The 'Functor' class is used for types that can be mapped over.
195 Instances of 'Functor' should satisfy the following laws:
196
197 > fmap id == id
198 > fmap (f . g) == fmap f . fmap g
199
200 The instances of 'Functor' for lists, 'Data.Maybe.Maybe' and 'System.IO.IO'
201 satisfy these laws.
202 -}
203
204 class Functor f where
205 fmap :: (a -> b) -> f a -> f b
206
207 -- | Replace all locations in the input with the same value.
208 -- The default definition is @'fmap' . 'const'@, but this may be
209 -- overridden with a more efficient version.
210 (<$) :: a -> f b -> f a
211 (<$) = fmap . const
id是一个函数
Prelude> :t id
id :: a -> a
Prelude> id "Daniel"
"Daniel"
Prelude> id 1
1
Prelude> id True
True
Prelude> id Just "Happy"
Just "Happy"
Prelude> id Nothing
Nothing
Functor是一种typeclass,用来定义一种允许的操作集合,这里是fmap,并且对于fmap提出了需要满足的条件:
- fmap id == id
- fmap (f . g) == fmap f . fmap g
可以视为"交换律"和“分配律”
Prelude Data.Char> fmap isDigit ((++) ['0'..'9'] ['a'..'f'])
[True,True,True,True,True,True,True,True,True,True,False,False,False,False,False,False]
Prelude Data.Char> :t isDigit
isDigit :: Char -> Bool
fmap不仅可以操作List(此时与List的函数map作用相同),还可以操作比如Maybe
Prelude Data.Char> fmap isDigit (Just 'a')
Just False
Prelude Data.Char> fmap isDigit (Nothing)
Nothing
Prelude Data.Char> fmap isDigit (Just '1')
Just True
3. Manod
Monad与Functor一样,也是用来定义类型可以进行的操作集合。
Prelude Data.Char> :i Monad
class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a
-- Defined in `GHC.Base'
instance Monad Maybe -- Defined in `Data.Maybe'
instance Monad (Either e) -- Defined in `Data.Either'
instance Monad [] -- Defined in `GHC.Base'
instance Monad IO -- Defined in `GHC.Base'
instance Monad ((->) r) -- Defined in `GHC.Base'
可以看到,这些操作包括(>>=) (>>) return fail
(>>)执行两个操作,但是放弃前一个操作的结果
Prelude Data.Char> :t (>>)
(>>) :: Monad m => m a -> m b -> m b
Prelude Data.Char> (>>) "Daniel" "King"
"KingKingKingKingKingKing"
212
213 {- | The 'Monad' class defines the basic operations over a /monad/,
214 a concept from a branch of mathematics known as /category theory/.
215 From the perspective of a Haskell programmer, however, it is best to
216 think of a monad as an /abstract datatype/ of actions.
217 Haskell's @do@ expressions provide a convenient syntax for writing
218 monadic expressions.
219
220 Minimal complete definition: '>>=' and 'return'.
221
222 Instances of 'Monad' should satisfy the following laws:
223
224 > return a >>= k == k a
225 > m >>= return == m
226 > m >>= (\x -> k x >>= h) == (m >>= k) >>= h
227
228 Instances of both 'Monad' and 'Functor' should additionally satisfy the law:
229
230 > fmap f xs == xs >>= return . f
231
232 The instances of 'Monad' for lists, 'Data.Maybe.Maybe' and 'System.IO.IO'
233 defined in the "Prelude" satisfy these laws.
234 -}
235
236 class Monad m where
237 -- | Sequentially compose two actions, passing any value produced
238 -- by the first as an argument to the second.
239 (>>=) :: forall a b. m a -> (a -> m b) -> m b
240 -- | Sequentially compose two actions, discarding any value produced
241 -- by the first, like sequencing operators (such as the semicolon)
242 -- in imperative languages.
243 (>>) :: forall a b. m a -> m b -> m b
244 -- Explicit for-alls so that we know what order to
245 -- give type arguments when desugaring
246
247 -- | Inject a value into the monadic type.
248 return :: a -> m a
249 -- | Fail with a message. This operation is not part of the
250 -- mathematical definition of a monad, but is invoked on pattern-match
251 -- failure in a @do@ expression.
252 fail :: String -> m a
253
254 {-# INLINE (>>) #-}
255 m >> k = m >>= \_ -> k
256 fail s = error s
(>>=)是将前一个操作的结果作为参数传递给后一个操作,但是注意需要使用return将从a到b的正常转换(a -> b)变成(a -> mb),即(a -> ma)(a - b) = (a -> mb)
Prelude Data.Char> :t return
return :: Monad m => a -> m a
Prelude Data.Char> :t (>>=)
(>>=) :: Monad m => m a -> (a -> m b) -> m b
Prelude Data.Char> (>>=) (return ((++) "Daniel" "King")) ((:) 'X')
"XDanielKing"
Prelude Data.Char> (>>=) (return ((++) "Daniel" "King")) ((++) "Hello ")
"Hello DanielKing"
所以(>>=)和return是配合使用的,效果很类似于Unix下的管道操作。
Monad的设计想法是允许pure的Haskell可以产生一些side effect,或者说除了自身的值以外,可以保存下一些状态信息。
比如在这里, ((++) "Daniel" "King")的结果就传递给了后面的action,这样就可以用来更新状态信息。
比较明显的应用是在IO以及Exception Handling上面。
如果参考数学中的概念,Monad可以被看作是虚数体系,或者是另外一个维度的类型;
普通的类型与Monad类型之间需要显式地进行转换,
return : 普通类型转换成Monad类型
<-:Monad类型转换成普通类型
IO action都是操作的Monad类型。
*RecursiveContents Control.Monad Data.Char System.FilePath> :t forM
forM :: Monad m => [a] -> (a -> m b) -> m [b]
*RecursiveContents Control.Monad Data.Char System.FilePath> forM "Daniel King" $ \ch -> do return (toUpper ch)
"DANIEL KING"