1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
mysql5.7 binlog
/*!*/;
# at 15937710
# at 15937814
#170526 13:00:15 server id 1 end_log_pos 15938129 CRC32 0x06901892 Table_map: `service`.`apply` mapped to number 108
# at 15938129
#170526 13:00:15 server id 1 end_log_pos 15938780 CRC32 0x9cf36fca Update_rows: table id 108 flags: STMT_END_F
### UPDATE `service`.`apply`
### WHERE
### @1='l4cnjqu7tenbe'
### @2='l4b4jkdo1hku1'
### SET
### @1='l4cnjqu7tenbe'
### @2='l4b4jkdo1hku1'
# at 15938780
#170526 13:00:15 server id 1 end_log_pos 15938811 CRC32 0xadd8095d Xid = 162625692
COMMIT/*!*//*!*/;
# at 16786556
# at 16786658
#170526 13:01:02 server id 1 end_log_pos 16786973 CRC32 0xe3c07d87 Table_map: `service`.`apply` mapped to number 108
# at 16786973
#170526 13:01:02 server id 1 end_log_pos 16787632 CRC32 0xcea6eab7 Update_rows: table id 108 flags: STMT_END_F
### UPDATE `service`.`apply`
### WHERE
|
注意红色字体。
flush table with read lock锁住主库 这点最为重要。
可用的方法
1.MySQL单表恢复方法
http://www.cnblogs.com/billyxp/p/3460682.html
从过滤掉这一条语句,后同步
2.记一次MySQL删库的数据恢复
http://blog.csdn.net/gzlaiyonghao/article/details/53340475
从ibdata1
文件恢复
3.MySQL 误操作后数据恢复(update,delete忘加where条件)
sed脚本需要看懂。
最好参考 http://www.cnblogs.com/gomysql/p/3582058.html
4.MySQL【Update误操作】回滚
http://www.cnblogs.com/zhoujinyi/archive/2012/12/26/2834897.html
这个案例最佳。
5.案例 - 误删千万的表
http://dadaman.blog.51cto.com/11373912/1933137
这个案例工具不错
还需要待更新
恢复方法,比较繁琐,实际效果不好,会丢失数据。
1.flush table with read lock锁住主库
如果不锁库,后面的数据在不断的更新,即使你恢复到故障点,也要关注后续的数据变化。比如一个字段。
2.copy binlog
3.恢复到12点
4.生产建立temp表
5.然后通过code,更新状态
6.查找12点后执行的update语句,找出来,更新这一个字段,因为数据在一直变动。
具体操作
1.恢复到故障前的状态,比如12点 grep -B 15 'type'
2.但是注意,如果是where很细的条件,就是@带数字,所以查起来要小心
操作命令
mysqlbinlog --base64-output=DECODE-ROWS -v --start-datetime="2017-05-25 23:30:00" --stop-datetime="2017-05-26 11:36:59" mysql-bin.xx|grep -B 15 'type'
或者
mysqlbinlog --no-defaults -v -v --base64-output=DECODE-ROWS mysql-bin.xx|grep -B 15 'type'
使用的脚本
先来看看mysql binlog update的语句样子,mysql版本5.7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
/
*
!
*
/
;
# at 15937710
# at 15937814
#170526 13:00:15 server id 1 end_log_pos 15938129 CRC32 0x06901892 Table_map: `a`.`apply` mapped to number 108
# at 15938129
#170526 13:00:15 server id 1 end_log_pos 15938780 CRC32 0x9cf36fca Update_rows: table id 108 flags: STMT_END_F
### UPDATE `a`.`apply`
### WHERE
### @1='l4cnjqu7tenbe'
### @2='l4b4jkdo1hku1'
### @3='xxx'
### @4='151226'
### @5='2017-05-26 11:29:42'
......(如果字段很多的话,还有更多)
### SET
### @1='l4cnjqu7tenbe'
### @2='l4b4jkdo1hku1'
### @3='xxx'
### @4='151226'
### @5='2017-05-26 11:29:42'
.......
|
python版本
可以参考http://wangwei007.blog.51cto.com/68019/1306940
python写的分析mysql binlog日志工具
# !/usr/bin/env python
# coding:utf-8
import os,sys,re
import logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
filename='myapp.log',
filemode='w')
listo=[]
pattern=r'^BEGIN.*?[^(BEGIN|COMMIT)]*COMMIT.*?;$'
patterf=r"/\*!\*/[\w\W]*?/\*!\*/"
patterdc=r"### @58=[^\s]+"
fname='/home/back/binlog/test1.sql'
dname='/home/back/binlog/test2.sql'
fp = file(fname)
content = fp.read()
#fp.close()
db_key = re.findall(patterf,content)
for i in db_key:
if 'UPDATE' in i and 'xx' in i and '@58' in i:
#logging.info('%s' %i)
dc=re.findall(patterdc,i)
if dc:
if len(dc)> 0:
print len(dc)
listo.append(i)
print len(listo)
with open(dname,'w+') as f:
for i in listo:
f.write(i)
fp.close()
shell脚本
'''
# vim summarize_binlogs.sh
#!/bin/bash
BINLOG_FILE="mysqld-bin.000035"
START_TIME="2017-05-16 13:30:00"
STOP_TIME="2017-05-18 14:00:00"
mysqlbinlog --base64-output=decode-rows -vv --start-datetime="${START_TIME}" --stop-datetime="${STOP_TIME}" ${BINLOG_FILE} | awk \
'BEGIN {s_type=""; s_count=0;count=0;insert_count=0;update_count=0;delete_count=0;flag=0;} \
{if(match($0, /#15.*Table_map:.*mapped to number/)) {printf "Timestamp : " $1 " " $2 " Table : " $(NF-4); flag=1} \
else if (match($0, /(### INSERT INTO .*..*)/)) {count=count+1;insert_count=insert_count+1;s_type="INSERT"; s_count=s_count+1;} \
else if (match($0, /(### UPDATE .*..*)/)) {count=count+1;update_count=update_count+1;s_type="UPDATE"; s_count=s_count+1;} \
else if (match($0, /(### DELETE FROM .*..*)/)) {count=count+1;delete_count=delete_count+1;s_type="DELETE"; s_count=s_count+1;} \
else if (match($0, /^(# at) /) && flag==1 && s_count>0) {print " Query Type : "s_type " " s_count " row(s) affected" ;s_type=""; s_count=0; } \
else if (match($0, /^(COMMIT)/)) {print "[Transaction total : " count " Insert(s) : " insert_count " Update(s) : " update_count " Delete(s) : " \
delete_count "] \n+----------------------+----------------------+----------------------+----------------------+"; \
count=0;insert_count=0;update_count=0; delete_count=0;s_type=""; s_count=0; flag=0} } '
:wq
# chmod u+x summarize_binlogs.sh
Q1 : Which tables received highest number of insert/update/delete statements?
./summarize_binlogs.sh | grep Table |cut -d':' -f5| cut -d' ' -f2 | sort | uniq -c | sort -nr
3 `sakila`.`payment_tmp`
3 `sakila`.`country`
2 `sakila`.`city`
1 `sakila`.`address`
Q2 : Which table received the highest number of DELETE queries?
./summarize_binlogs.sh | grep -E 'DELETE' |cut -d':' -f5| cut -d' ' -f2 | sort | uniq -c | sort -nr
2 `sakila`.`country`
1 `sakila`.`payment_tmp`
1 `sakila`.`city`
1 `sakila`.`address`
Q3: How many insert/update/delete queries executed against sakila.country table?
./summarize_binlogs.sh | grep -i '`sakila`.`country`' | awk '{print $7 " " $11}' | sort -k1,2 | uniq -c
2 `sakila`.`country` DELETE
1 `sakila`.`country` INSERT
Q4: Give me the top 3 statements which affected maximum number of rows.
./summarize_binlogs.sh | grep Table | sort -nr -k 12 | head -n 3
Timestamp : #150116 13:42:13 Table : `sakila`.`payment_tmp` Query Type : INSERT 16049 row(s) affected
Timestamp : #150116 13:42:28 Table : `sakila`.`payment_tmp` Query Type : UPDATE 6890 row(s) affected
Timestamp : #150116 13:42:20 Table : `sakila`.`payment_tmp` Query Type : DELETE 5001 row(s) affected
Q5 : Find DELETE queries that affected more than 1000 rows.
./summarize_binlogs.sh | grep -E 'DELETE' | awk '{if($12>1000) print $0}'
Timestamp : #150116 13:42:20 Table : `sakila`.`payment_tmp` Query Type : DELETE 5001 row(s) affected
If we want to get all queries that affected more than 1000 rows.
./summarize_binlogs.sh | grep -E 'Table' | awk '{if($12>1000) print $0}'
Timestamp : #150116 13:42:13 Table : `sakila`.`payment_tmp` Query Type : INSERT 16049 row(s) affected
Timestamp : #150116 13:42:20 Table : `sakila`.`payment_tmp` Query Type : DELETE 5001 row(s) affected
Timestamp : #150116 13:42:28 Table : `sakila`.`payment_tmp` Query Type : UPDATE 6890 row(s) affected
'''
反思
1.审核平台
2.流程,svn钩子的状态回归,与脚本关联
本文转自 liqius 51CTO博客,原文链接:http://blog.51cto.com/szgb17/1929921,如需转载请自行联系原作者