Linux启动过程的C语言代码分析

1. main函数

参见上方http://www.cnblogs.com/long123king/p/3543872.html,代码跳转到main函数。

arch/x86/boot/main.c

   1: void main(void)
   2: {
   3:     /* First, copy the boot header into the "zeropage" */
   4:     copy_boot_params();
   5:  
   6:     /* Initialize the early-boot console */
   7:     console_init();
   8:     if (cmdline_find_option_bool("debug"))
   9:         puts("early console in setup code\n");
  10:  
  11:     /* End of heap check */
  12:     init_heap();
  13:  
  14:     /* Make sure we have all the proper CPU support */
  15:     if (validate_cpu()) {
  16:         puts("Unable to boot - please use a kernel appropriate "
  17:              "for your CPU.\n");
  18:         die();
  19:     }
  20:  
  21:     /* Tell the BIOS what CPU mode we intend to run in. */
  22:     set_bios_mode();
  23:  
  24:     /* Detect memory layout */
  25:     detect_memory();
  26:  
  27:     /* Set keyboard repeat rate (why?) */
  28:     keyboard_set_repeat();
  29:  
  30:     /* Query MCA information */
  31:     query_mca();
  32:  
  33:     /* Query Intel SpeedStep (IST) information */
  34:     query_ist();
  35:  
  36:     /* Query APM information */
  37: #if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE)
  38:     query_apm_bios();
  39: #endif
  40:  
  41:     /* Query EDD information */
  42: #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  43:     query_edd();
  44: #endif
  45:  
  46:     /* Set the video mode */
  47:     set_video();
  48:  
  49:     /* Do the last things and invoke protected mode */
  50:     go_to_protected_mode();
  51: }

2. 进入保护模式

   1: /*
   2:  * Actual invocation sequence
   3:  */
   4: void go_to_protected_mode(void)
   5: {
   6:     /* Hook before leaving real mode, also disables interrupts */
   7:     realmode_switch_hook();
   8:  
   9:     /* Enable the A20 gate */
  10:     if (enable_a20()) {
  11:         puts("A20 gate not responding, unable to boot...\n");
  12:         die();
  13:     }
  14:  
  15:     /* Reset coprocessor (IGNNE#) */
  16:     reset_coprocessor();
  17:  
  18:     /* Mask all interrupts in the PIC */
  19:     mask_all_interrupts();
  20:  
  21:     /* Actual transition to protected mode... */
  22:     setup_idt();
  23:     setup_gdt();
  24:     protected_mode_jump(boot_params.hdr.code32_start,
  25:                 (u32)&boot_params + (ds() << 4));
  26: }

enable_a20,打开20位以上的地址线,因为在实模式下,最高寻址1MB,20位以上的地址线没有用到,处于关闭状态。当我们把内核映射准备好,并且加载到了1MB物理内存时,要想跳转到内核代码中进行执行,必须开启20位以上的地址线。

 

设置GDT,这个GDT是临时的,实际上只设置了CS/DS段,而且是简单的0~4GB范围。

   1: struct gdt_ptr {
   2:     u16 len;
   3:     u32 ptr;
   4: } __attribute__((packed));
   5:  
   6: static void setup_gdt(void)
   7: {
   8:     /* There are machines which are known to not boot with the GDT
   9:        being 8-byte unaligned.  Intel recommends 16 byte alignment. */
  10:     static const u64 boot_gdt[] __attribute__((aligned(16))) = {
  11:         /* CS: code, read/execute, 4 GB, base 0 */
  12:         [GDT_ENTRY_BOOT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff),
  13:         /* DS: data, read/write, 4 GB, base 0 */
  14:         [GDT_ENTRY_BOOT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff),
  15:         /* TSS: 32-bit tss, 104 bytes, base 4096 */
  16:         /* We only have a TSS here to keep Intel VT happy;
  17:            we don't actually use it for anything. */
  18:         [GDT_ENTRY_BOOT_TSS] = GDT_ENTRY(0x0089, 4096, 103),
  19:     };
  20:     /* Xen HVM incorrectly stores a pointer to the gdt_ptr, instead
  21:        of the gdt_ptr contents.  Thus, make it static so it will
  22:        stay in memory, at least long enough that we switch to the
  23:        proper kernel GDT. */
  24:     static struct gdt_ptr gdt;
  25:  
  26:     gdt.len = sizeof(boot_gdt)-1;
  27:     gdt.ptr = (u32)&boot_gdt + (ds() << 4);
  28:  
  29:     asm volatile("lgdtl %0" : : "m" (gdt));
  30: }

protected_mode_jump又跳转到了汇编语言。

3. protected_mode_jump

   1:  
   2:     
   3:     .code16
   4:  
   5: /*
   6:  * void protected_mode_jump(u32 entrypoint, u32 bootparams);
   7:  */
   8: GLOBAL(protected_mode_jump)
   9:     movl    %edx, %esi        # Pointer to boot_params table
  10:  
  11:     xorl    %ebx, %ebx
  12:     movw    %cs, %bx
  13:     shll    $4, %ebx
  14:     addl    %ebx, 2f
  15:     jmp    1f            # Short jump to serialize on 386/486
  16: 1:
  17:  
  18:     movw    $__BOOT_DS, %cx
  19:     movw    $__BOOT_TSS, %di
  20:  
  21:     movl    %cr0, %edx
  22:     orb    $X86_CR0_PE, %dl    # Protected mode
  23:     movl    %edx, %cr0
  24:  
  25:     # Transition to 32-bit mode
  26:     .byte    0x66, 0xea        # ljmpl opcode
  27: 2:    .long    in_pm32            # offset
  28:     .word    __BOOT_CS        # segment
  29: ENDPROC(protected_mode_jump)

该段开始的.code16指令,表示这段代码依然是16位的实模式代码。

使能CR0寄存器中的PE(Protection Enable)位,进入保护模式。

movl    %cr0, %edx
orb    $X86_CR0_PE, %dl    # Protected mode
movl    %edx, %cr0

    # Transition to 32-bit mode
    .byte    0x66, 0xea        # ljmpl opcode
2:    .long    in_pm32            # offset
    .word    __BOOT_CS        # segment

ljmpl跳转到GDT中设置好的BOOT_CS段的in_pm32地址处执行,这时就已经是32位的保护模式了。

4. in_pm32

in_pm32标号代表的意思就是“在32位保护模式下运行”

   1: .code32
   2: .section ".text32","ax"
   3: AL(in_pm32)
   4: # Set up data segments for flat 32-bit mode
   5: movl    %ecx, %ds
   6: movl    %ecx, %es
   7: movl    %ecx, %fs
   8: movl    %ecx, %gs
   9: movl    %ecx, %ss
  10: # The 32-bit code sets up its own stack, but this way we do have
  11: # a valid stack if some debugging hack wants to use it.
  12: addl    %ebx, %esp
  13:  
  14: # Set up TR to make Intel VT happy
  15: ltr    %di
  16:  
  17: # Clear registers to allow for future extensions to the
  18: # 32-bit boot protocol
  19: xorl    %ecx, %ecx
  20: xorl    %edx, %edx
  21: xorl    %ebx, %ebx
  22: xorl    %ebp, %ebp
  23: xorl    %edi, %edi
  24:  
  25: # Set up LDTR to make Intel VT happy
  26: lldt    %cx
  27:  
  28: jmpl    *%eax            # Jump to the 32-bit entrypoint
  29: ROC(in_pm32)

各个数据段的段选择子的设置:

# Set up data segments for flat 32-bit mode
movl    %ecx, %ds
movl    %ecx, %es
movl    %ecx, %fs
movl    %ecx, %gs
movl    %ecx, %ss

回想protected_mode_jump中对于ecx的设置:

1:

    movw    $__BOOT_DS, %cx
    movw    $__BOOT_TSS, %di

 

将各个数据段,包括栈段都设置成BOOT_DS段选择子。

设置栈指针:

# The 32-bit code sets up its own stack, but this way we do have
# a valid stack if some debugging hack wants to use it.
addl    %ebx, %esp

回想上方ebx的设置:

xorl    %ebx, %ebx 【清0】
movw    %cs, %bx 【当前的CS代码段基地】
shll    $4, %ebx 【左移4位,取到当前CS代码段的起始地址】
addl    %ebx, 2f 【将标号2处设置成esp的位置】

……

    # Transition to 32-bit mode
    .byte    0x66, 0xea        # ljmpl opcode
2:    .long    in_pm32            # offset
    .word    __BOOT_CS        # segment


 

那么标号2在什么位置呢?

回想Setup.ld链接脚本【该脚本用于指导链接器生成setup可执行程序】,以及protected_mode_jump开头的段定义

    .text
    .code16

/*
* void protected_mode_jump(u32 entrypoint, u32 bootparams);
*/
GLOBAL(protected_mode_jump)

. = 0;
.bstext        : { *(.bstext) }
.bsdata        : { *(.bsdata) }

. = 497;
.header        : { *(.header) }
.entrytext    : { *(.entrytext) }
.inittext    : { *(.inittext) }
.initdata    : { *(.initdata) }
__end_init = .;

.text        : { *(.text) }
.text32        : { *(.text32) }

. = ALIGN(16);
.rodata        : { *(.rodata*) }

因此,32位的栈的栈指针被设置在了32位代码段的下部。

 

然后是跳转到下一阶段的程序执行

    jmpl    *%eax            # Jump to the 32-bit entrypoint
ENDPROC(in_pm32)

那么eax寄存器的值是多少呢?

回想调用protected_mode_jump时的参数

/* Actual transition to protected mode... */
setup_idt();
setup_gdt();
protected_mode_jump(boot_params.hdr.code32_start,
            (u32)&boot_params + (ds() << 4));

因此跳转到了code32_start地址处的函数执行(因为%eax前面有*,代表解引用,因此是跳转到该指针指向的函数执行)。

code32_start:                # here loaders can put a different
                    # start address for 32-bit code.
        .long    0x100000    # 0x100000 = default for big kernel

 

也就是跳转到1MB物理内存处执行,这次是真的将控制权交给内核了。

转载于:https://www.cnblogs.com/long123king/p/3545688.html

你可能感兴趣的:(Linux启动过程的C语言代码分析)