福利|热门技术看什么?这份书单告诉你!(内含PDF链接)

这份书单源自网络。虽然所列图书都是免费提供的,但如果您有深入学习的打算,我还是推荐您购买纸质版书籍。作者花费大量时间整合这些资源,希望得到您的支持与喜爱!

福利|热门技术看什么?这份书单告诉你!(内含PDF链接)_第1张图片

数据科学概论

  • An Introduction to Data Science
Jeffrey Stanton, 2013

  • School of Data Handbook
School of Data, 2015

  • Data Jujitsu: The Art of Turning Data into Product
DJ Patil, 2012

数据科学家访谈

  • The Data Science Handbook
Carl Shan, Henry Wang, William Chen, & Max Song, 2015

  • The Data Analytics Handbook
Brian Liou, Tristan Tao, & Declan Shener, 2015

创建数据科学团队

  • Data Driven: Creating a Data Culture
Hilary Mason & DJ Patil, 2015

  • Building Data Science Teams
DJ Patil, 2011

  • Understanding the Chief Data Officer
Julie Steele, 2015

数据分析

  • The Elements of Data Analytic Style
Jeff Leek, 2015

分布式计算工具

  • Hadoop:权威指南
Tom White, 2011

  • Data-Intensive Text Processing with MapReduce
Jimmy Lin & Chris Dyer, 2010

程序语言学习

Python

  • 像计算机科学家一样思考Python
Allen Downey, 2012

  • Python Programming
Wikibooks, 2015

  • Python编程快速上手  ——让繁琐工作自动化
Al Sweigart, 2015

  • “笨办法”学Python
Zed A. Shaw, 2013

R语言

  • R Programming for Data Science
Roger D. Peng

  • R Programming
Wikibooks, 2014

  • 高级R语言编程指南
Hadley Wickham, 2014

SQL

  • Learn SQL The Hard Way
Zed. A. Shaw, 2010

  • SQL Tutorial
Tutorials Point

数据挖掘和机器学习

  • Introduction to Machine Learning
Amnon Shashua, 2008

  • Machine Learning
Abdelhamid Mellouk & Abdennacer Chebira, 450

  • Machine Learning – The Complete Guide
Wikipedia

  • 社会媒体挖掘
Reza Zafarani, Mohammad Ali Abbasi, & Huan Liu, 2014

  • 数据挖掘:实用机器学习工具与技术
Ian H. Witten & Eibe Frank, 2005

  • 大数据:互联网大规模数据挖掘与分布式处理
Jure Leskovec, Anand Rajaraman, & Jeff Ullman, 2014

  • 写给程序员的数据挖掘实践指南
Ron Zacharski, 2015

  • Data Mining with Rattle and R
Graham Williams, 2011

  • 数据挖掘与分析:概念与算法
Mohammed J. Zaki & Wagner Meria Jr., 2014

  • 贝叶斯方法:概率编程与贝叶斯推断
Cam Davidson-Pilon, 2015

  • 数据挖掘技术 ——应用于市场营销、销售与客户关系管理
Michael J.A. Berry & Gordon S. Linoff, 2004

  • Inductive Logic Programming: Techniques and Applications
Nada Lavrac & Saso Dzeroski, 1994

  • Pattern Recognition and Machine Learning
Christopher M. Bishop, 2006

  • Machine Learning, Neural and Statistical Classification
D. Michie, D.J. Spiegelhalter, & C.C. Taylor, 1999

  • 信息论、推理与学习算法
David J.C. MacKay, 2005

  • Data Mining and Business Analytics with R
Johannes Ledolter, 2013

  • Bayesian Reasoning and Machine Learning
David Barber, 2014

  • Gaussian Processes for Machine Learning
C. E. Rasmussen & C. K. I. Williams, 2006

  • Reinforcement Learning: An Introduction
Richard S. Sutton & Andrew G. Barto, 2012

  • Algorithms for Reinforcement Learning
Csaba Szepesvari , 2009

  • Big Data, Data Mining, and Machine Learning
Jared Dean, 2014

  • Modeling With Data
Ben Klemens, 2008

  • KB – Neural Data Mining with Python Sources
Roberto Bello, 2013

  • 深度学习
Yoshua Bengio, Ian J. Goodfellow, & Aaron Courville, 2015

  • Neural Networks and Deep Learning
Michael Nielsen, 2015

  • Data Mining Algorithms In R
Wikibooks, 2014

  • Theory and Applications for Advanced Text Mining
Shigeaki Sakurai, 2012

统计和统计学习

  • 统计思维:程序员数学之概率统计
Allen B. Downey, 2014

  • 贝叶斯思维:统计建模的Python学习法
Allen B. Downey, 2012

  • 统计学习导论:基于R应用
Gareth James, Daniela Witten, Trevor Hastie, & Robert Tibshirani, 2013

  • A First Course in Design and Analysis of Experiments
Gary W. Oehlert, 2010

数据可视化

  • D3 Tips and Tricks
Malcolm Maclean, 2015

  • 数据可视化实战:使用D3设计交互式图表
Scott Murray, 2013

大数据

  • Disruptive Possibilities: How Big Data Changes Everything
Jeffrey Needham, 2013

  • Real-Time Big Data Analytics: Emerging Architecture
Mike Barlow, 2013

  • Big Data Now
O’Reilly Media, Inc., 2012

计算机科学

  • Python自然语言处理
Steven Bird, 2009

  • 计算机视觉:算法与应用
Richard Szeliski, 2010

  • Concise Computer Vision
Reinhard Klette, 2010

  • 人工智能:一种现代的方法
Stuart Russell, 1995

当看到这里的时候,您即将阅读这些经典的书籍。无论现在处于什么水平,我都希望您有自己的收获!如果有更多好书推荐,欢迎您在下方留言,谢谢!


以上为全部译文

文章原标题60+ Free Books on Big Data, Data Science, Data Mining, Machine Learning, Python, R, and more ,译者:Anchor C.,审阅:虎说八道。

文章为简译,更多内容请查看原文。


你可能感兴趣的:(福利|热门技术看什么?这份书单告诉你!(内含PDF链接))