大数据_数据采集引擎(Sqoop和Flume)

一、数据采集引擎

    1、准备实验环境: 准备Oracle数据库
                      用户:sh  表:sales 订单表(92万)

    2、Sqoop:采集关系型数据库中的数据
               用在离线计算的应用中
               强调:批量
               (1)数据交换引擎: RDBMS  <--->  Sqoop <---> HDFS、HBase、Hive2)底层依赖MapReduce
               (3)依赖JDBC
               (4)安装:tar -zxvf sqoop-1.4.5.bin__hadoop-0.23.tar.gz -C ~/training/
                    设置环境变量:
                    SQOOP_HOME=/root/training/sqoop-1.4.5.bin__hadoop-0.23
                    export SQOOP_HOME

                    PATH=$SQOOP_HOME/bin:$PATH
                    export PATH

                注意:如果是Oracle数据库,大写:用户名、表名、列名

          (*)codegen            Generate code to interact with database records
                根据表结构自动生成对应Java类
                sqoop codegen --connect jdbc:oracle:thin:@192.168.157.163:1521/orcl --username SCOTT --password tiger --table EMP --outdir /root/sqoop


          (*)create-hive-table  Import a table definition into Hive

          (*)eval               Evaluate a SQL statement and display the results
                在Sqoop中执行SQL
                sqoop eval --connect jdbc:oracle:thin:@192.168.157.163:1521/orcl --username SCOTT --password tiger --query 'select * from emp'

          (*)export             Export an HDFS directory to a database table

          (*)help               List available commands

          (*)import             Import a table from a database to HDFS
                导入数据
                (1)导入EMP表的所有数据(HDFS上)
                sqoop import --connect jdbc:oracle:thin:@192.168.157.163:1521/orcl --username SCOTT --password tiger --table EMP --target-dir /sqoop/import/emp1    

                (2)导入指定的列
                    sqoop import --connect jdbc:oracle:thin:@192.168.157.163:1521/orcl --username SCOTT --password tiger --table EMP --columns ENAME,SAL  --target-dir /sqoop/import/emp2   

                (3) 导入订单表
                sqoop import --connect jdbc:oracle:thin:@192.168.157.163:1521/orcl --username SH --password sh --table SALES --target-dir /sqoop/import/sales -m 1
                错误:ERROR tool.ImportTool: Error during import: No primary key could be found for table SALES. Please specify one with --split-by or perform a sequential import with '-m 1'.


          (*)import-all-tables  Import tables from a database to HDFS
                导入某个用户下所有的表,默认路径:/user/root
                sqoop import-all-tables --connect jdbc:oracle:thin:@192.168.157.163:1521/orcl --username SCOTT --password tiger       

          (*)job                Work with saved jobs

          (*)list-databases     List available databases on a server
                (*) MySQL数据库:就是数据库的名字
                (*) Oracle数据库:是数据库中所有用户的名字
                sqoop list-databases --connect jdbc:oracle:thin:@192.168.157.163:1521/orcl --username SYSTEM --password password


          (*)list-tables        List available tables in a database
          (*)merge              Merge results of incremental imports
          (*)metastore          Run a standalone Sqoop metastore
          (*)version            Display version information

    3、Flume:采集日志
               用在实时计算(流式计算)的应用中
               强调:实时

#bin/flume-ng agent -n a4 -f myagent/a4.conf -c conf -Dflume.root.logger=INFO,console
#定义agent名, source、channel、sink的名称
a4.sources = r1
a4.channels = c1
a4.sinks = k1

#具体定义source
a4.sources.r1.type = spooldir
a4.sources.r1.spoolDir = /root/training/logs

#具体定义channel
a4.channels.c1.type = memory
a4.channels.c1.capacity = 10000
a4.channels.c1.transactionCapacity = 100

#定义拦截器,为消息添加时间戳
a4.sources.r1.interceptors = i1
a4.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder


#具体定义sink
a4.sinks.k1.type = hdfs
a4.sinks.k1.hdfs.path = hdfs://192.168.157.11:9000/flume/%Y%m%d
a4.sinks.k1.hdfs.filePrefix = events-
a4.sinks.k1.hdfs.fileType = DataStream

#不按照条数生成文件
a4.sinks.k1.hdfs.rollCount = 0
#HDFS上的文件达到128M时生成一个文件
a4.sinks.k1.hdfs.rollSize = 134217728
#HDFS上的文件达到60秒生成一个文件
a4.sinks.k1.hdfs.rollInterval = 60

#组装source、channel、sink
a4.sources.r1.channels = c1
a4.sinks.k1.channel = c1



Flume的体系结构

大数据_数据采集引擎(Sqoop和Flume)_第1张图片


二、HUE

三、ZooKeeper

Oracle和Mysql的区别

大数据_数据采集引擎(Sqoop和Flume)_第2张图片

你可能感兴趣的:(大数据)