https://handong1587.github.io/deep_learning/2015/10/09/unsupervised-learning.html
Jump to...
1. Papers
1. Clustering
2. Auto-encoder
3. RBM (Restricted Boltzmann Machine)
1. Papers
2. Blogs
3. Projects
4. Videos
Restricted Boltzmann Machine (RBM)
Sparse Coding
Fast Convolutional Sparse Coding in the Dual Domain
https://arxiv.org/abs/1709.09479
Auto-encoder
Papers
On Random Weights and Unsupervised Feature Learning
- intro: ICML 2011
- paper: http://www.robotics.stanford.edu/~ang/papers/icml11-RandomWeights.pdf
Unsupervised Learning of Spatiotemporally Coherent Metrics
- paper: http://arxiv.org/abs/1412.6056
- code: https://github.com/jhjin/flattened-cnn
Unsupervised Learning of Visual Representations using Videos
- intro: ICCV 2015
- project page: http://www.cs.cmu.edu/~xiaolonw/unsupervise.html
- arxiv: http://arxiv.org/abs/1505.00687
- paper: http://www.cs.toronto.edu/~nitish/depth_oral.pdf
- github: https://github.com/xiaolonw/caffe-video_triplet
Unsupervised Visual Representation Learning by Context Prediction
- intro: ICCV 2015
- homepage: http://graphics.cs.cmu.edu/projects/deepContext/
- arxiv: http://arxiv.org/abs/1505.05192
- github: https://github.com/cdoersch/deepcontext
Unsupervised Learning on Neural Network Outputs
- intro: “use CNN trained on the ImageNet of 1000 classes to the ImageNet of over 20000 classes”
- arxiv: http://arxiv.org/abs/1506.00990
- github: https://github.com/yaolubrain/ULNNO
Unsupervised Domain Adaptation by Backpropagation
- intro: ICML 2015
- project page: http://sites.skoltech.ru/compvision/projects/grl/
- paper: http://sites.skoltech.ru/compvision/projects/grl/files/paper.pdf
- github: https://github.com/ddtm/caffe/tree/grl
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
- arxiv: http://arxiv.org/abs/1603.09246
- notes: http://www.inference.vc/notes-on-unsupervised-learning-of-visual-representations-by-solving-jigsaw-puzzles/
Tagger: Deep Unsupervised Perceptual Grouping
![Unsupervised Learning[论文合集]_第1张图片](http://img.e-com-net.com/image/info8/f32e82220c8b4f41b9ef49d1f2abc82e.jpg)
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1606.06724
- github: https://github.com/CuriousAI/tagger
Regularization for Unsupervised Deep Neural Nets
- arxiv: http://arxiv.org/abs/1608.04426
Sparse coding: A simple exploration
- blog: https://blog.metaflow.fr/sparse-coding-a-simple-exploration-152a3c900a7c#.o7g2jk9zi
- github: https://github.com/metaflow-ai/blog/tree/master/sparse-coding
Navigating the unsupervised learning landscape
- blog: https://culurciello.github.io//tech/2016/06/10/unsup.html
Unsupervised Learning using Adversarial Networks
- intro: Facebook AI Research
- youtube: https://www.youtube.com/watch?v=lalg1CuNB30
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
- intro: UC Berkeley
- project page: https://richzhang.github.io/splitbrainauto/
- arxiv: https://arxiv.org/abs/1611.09842
- github: https://github.com/richzhang/splitbrainauto
Learning Features by Watching Objects Move
- intro: CVPR 2017. Facebook AI Research & UC Berkeley
- arxiv: https://arxiv.org/abs/1612.06370
- github((Caffe+Torch): https://github.com/pathak22/unsupervised-video
CNN features are also great at unsupervised classification
- intro: Arts et Métiers ParisTech
- arxiv: https://arxiv.org/abs/1707.01700
Supervised Convolutional Sparse Coding
https://arxiv.org/abs/1804.02678
Clustering
Deep clustering: Discriminative embeddings for segmentation and separation
- arxiv: https://arxiv.org/abs/1508.04306
- github(Keras): https://github.com/jcsilva/deep-clustering
Neural network-based clustering using pairwise constraints
- intro: ICLR 2016
- arxiv: https://arxiv.org/abs/1511.06321
Unsupervised Deep Embedding for Clustering Analysis
- intro: ICML 2016. Deep Embedded Clustering (DEC)
- arxiv: https://arxiv.org/abs/1511.06335
- github: https://github.com/piiswrong/dec
Joint Unsupervised Learning of Deep Representations and Image Clusters
- intro: CVPR 2016
- arxiv: https://arxiv.org/abs/1604.03628
- github(Torch): https://github.com/jwyang/joint-unsupervised-learning
Single-Channel Multi-Speaker Separation using Deep Clustering
- arxiv: http://arxiv.org/abs/1607.02173
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering
- arxiv: https://arxiv.org/abs/1610.04794
Deep Unsupervised Clustering with Gaussian Mixture Variational
- arxiv: https://arxiv.org/abs/1611.02648
- github: https://github.com/Nat-D/GMVAE
Variational Deep Embedding: A Generative Approach to Clustering
- arxiv: https://arxiv.org/abs/1611.05148
A new look at clustering through the lens of deep convolutional neural networks
- intro: University of Central Florida & Purdue University
- arxiv: https://arxiv.org/abs/1706.05048
Deep Subspace Clustering Networks
- intro: NIPS 2017
- arxiv: https://arxiv.org/abs/1709.02508
SpectralNet: Spectral Clustering using Deep Neural Networks
- arxiv: https://arxiv.org/abs/1801.01587
- github: https://github.com//kstant0725/SpectralNet
Clustering with Deep Learning: Taxonomy and New Methods
- intro: Technical University of Munich
- arxiv: https://arxiv.org/abs/1801.07648
- github: https://github.com/elieJalbout/Clustering-with-Deep-learning
Deep Continuous Clustering
- arxiv: https://arxiv.org/abs/1803.01449
- github: https://github.com/shahsohil/DCC
Learning to Cluster
- openreview: https://openreview.net/forum?id=HkWTqLsIz
- github: https://github.com/kutoga/learning2cluster
Learning Neural Models for End-to-End Clustering
- intro: ANNPR
- arxiv: https://arxiv.org/abs/1807.04001
Deep Clustering for Unsupervised Learning of Visual Features
- intro: ECCV 2018
- arxiv: https://arxiv.org/abs/1807.05520
Improving Image Clustering With Multiple Pretrained CNN Feature Extractors
- intro: Poster presentation at BMVC 2018
- arxiv: https://arxiv.org/abs/1807.07760
Deep clustering: On the link between discriminative models and K-means
https://arxiv.org/abs/1810.04246
Deep Density-based Image Clustering
https://arxiv.org/abs/1812.04287
Deep Representation Learning Characterized by Inter-class Separation for Image Clustering
- intro: WACV 2019
- arxiv: https://arxiv.org/abs/1901.06474
Auto-encoder
Auto-Encoding Variational Bayes
- arxiv: http://arxiv.org/abs/1312.6114
The Potential Energy of an Autoencoder
- intro: PAMI 2014
- paper: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.698.4921&rep=rep1&type=pdf
Importance Weighted Autoencoders
- paper: http://arxiv.org/abs/1509.00519
- github: https://github.com/yburda/iwae
Review of Auto-Encoders
- intro: Piotr Mirowski, Microsoft Bing London, 2014
- slides: https://piotrmirowski.files.wordpress.com/2014/03/piotrmirowski_2014_reviewautoencoders.pdf
- github: https://github.com/piotrmirowski/Tutorial_AutoEncoders/
Stacked What-Where Auto-encoders
- arxiv: http://arxiv.org/abs/1506.02351
Ladder Variational Autoencoders
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
- arxiv:http://arxiv.org/abs/1602.02282
- github: https://github.com/casperkaae/LVAE
Rank Ordered Autoencoders
- arxiv: http://arxiv.org/abs/1605.01749
- github: https://github.com/paulbertens/rank-ordered-autoencoder
Decoding Stacked Denoising Autoencoders
- arxiv: http://arxiv.org/abs/1605.02832
Keras autoencoders (convolutional/fcc)
- github: https://github.com/nanopony/keras-convautoencoder
Building Autoencoders in Keras
- blog: http://blog.keras.io/building-autoencoders-in-keras.html
Review of auto-encoders
- intro: Tutorial code for Auto-Encoders, implementing Marc’Aurelio Ranzato’s Sparse Encoding Symmetric Machine and testing it on the MNIST handwritten digits data.
- paper: https://github.com/piotrmirowski/Tutorial_AutoEncoders/blob/master/PiotrMirowski_2014_ReviewAutoEncoders.pdf
- github: https://github.com/piotrmirowski/Tutorial_AutoEncoders
Autoencoders: Torch implementations of various types of autoencoders
- intro: AE / SparseAE / DeepAE / ConvAE / UpconvAE / DenoisingAE / VAE / AdvAE
- github: https://github.com/Kaixhin/Autoencoders
Tutorial on Variational Autoencoders
- arxiv: http://arxiv.org/abs/1606.05908
- github: https://github.com/cdoersch/vae_tutorial
Variational Autoencoders Explained
- blog: http://kvfrans.com/variational-autoencoders-explained/
- github: https://github.com/kvfrans/variational-autoencoder
Introducing Variational Autoencoders (in Prose and Code)
- blog: http://blog.fastforwardlabs.com/post/148842796218/introducing-variational-autoencoders-in-prose-and
Under the Hood of the Variational Autoencoder (in Prose and Code)
- blog: http://blog.fastforwardlabs.com/post/149329060653/under-the-hood-of-the-variational-autoencoder-in
The Unreasonable Confusion of Variational Autoencoders
- blog: https://jaan.io/unreasonable-confusion/
Variational Autoencoder for Deep Learning of Images, Labels and Captions
- intro: NIPS 2016. Duke University & Nokia Bell Labs
- paper: http://people.ee.duke.edu/~lcarin/Yunchen_nips_2016.pdf
Convolutional variational autoencoder with PyMC3 and Keras
http://nbviewer.jupyter.org/github/taku-y/pymc3/blob/89b8634a2fd30ef96429953558bf360132b6153f/docs/source/notebooks/convolutional_vae_keras_advi.ipynb
Pixelvae: A Latent Variable Model For Natural Images
- paper: http://openreview.net/pdf?id=BJKYvt5lg
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
- paper: http://openreview.net/pdf?id=Sy2fzU9gl
- github: https://github.com/crcrpar/chainer-VAE
Variational Lossy Autoencoder
- arxiv: https://arxiv.org/abs/1611.02731
Convolutional Autoencoders
- blog: https://pgaleone.eu/neural-networks/2016/11/24/convolutional-autoencoders/
Convolutional Autoencoders in Tensorflow
- blog: https://pgaleone.eu/neural-networks/deep-learning/2016/12/13/convolutional-autoencoders-in-tensorflow/
A Deep Convolutional Auto-Encoder with Pooling - Unpooling Layers in Caffe
- arxiv: https://arxiv.org/abs/1701.04949
Deep Matching Autoencoders
- intro: University of Edinburgh & RIKEN AIP
- keywords: Deep Matching Autoencoders (DMAE)
- arxiv: https://arxiv.org/abs/1711.06047
Understanding Autoencoders with Information Theoretic Concepts
- intro: University of Florida
- arxiv: https://arxiv.org/abs/1804.00057
Hyperspherical Variational Auto-Encoders
- intro: University of Amsterdam
- project page: https://nicola-decao.github.io/s-vae/
- arxiv: https://arxiv.org/abs/1804.00891
- github: https://github.com/nicola-decao/s-vae
Spatial Frequency Loss for Learning Convolutional Autoencoders
https://arxiv.org/abs/1806.02336
DAQN: Deep Auto-encoder and Q-Network
https://arxiv.org/abs/1806.00630
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1807.07543
- github: https://github.com/brain-research/acai
RBM (Restricted Boltzmann Machine)
Papers
Deep Boltzmann Machines
- author: Ruslan Salakhutdinov, Geoffrey Hinton
- paper: http://www.cs.toronto.edu/~hinton/absps/dbm.pdf
On the Equivalence of Restricted Boltzmann Machines and Tensor Network States
- arxiv: https://arxiv.org/abs/1701.04831
- github: https://github.com/yzcj105/rbm2mps
Matrix Product Operator Restricted Boltzmann Machines
https://arxiv.org/abs/1811.04608
Blogs
A Tutorial on Restricted Boltzmann Machines
http://xiangjiang.live/2016/02/12/a-tutorial-on-restricted-boltzmann-machines/
Dreaming of names with RBMs
- blog: http://colinmorris.github.io/blog/dreaming-rbms
- github: https://github.com/colinmorris/char-rbm
on Cheap Learning: Partition Functions and RBMs
- blog: https://charlesmartin14.wordpress.com/2016/09/10/on-cheap-learning-partition-functions-and-rbms/
Improving RBMs with physical chemistry
- blog: https://charlesmartin14.wordpress.com/2016/10/21/improving-rbms-with-physical-chemistry/
- github: https://github.com/charlesmartin14/emf-rbm/blob/master/EMF_RBM_Test.ipynb
Projects
Restricted Boltzmann Machine (Haskell)
- intro: “This is an implementation of two machine learning algorithms, Contrastive Divergenceand Back-propagation.”
- github: https://github.com/aeyakovenko/rbm
tensorflow-rbm: Tensorflow implementation of Restricted Boltzman Machine
- intro: Tensorflow implementation of Restricted Boltzman Machine for layerwise pretraining of deep autoencoders.
- github: https://github.com/meownoid/tensorfow-rbm
Videos
Modelling a text corpus using Deep Boltzmann Machines
- youtube: https://www.youtube.com/watch?v=uju4RXEniA8
Foundations of Unsupervised Deep Learning
- intro: Ruslan Salakhutdinov [CMU]
- youtube: https://www.youtube.com/watch?v=rK6bchqeaN8
- mirror: https://pan.baidu.com/s/1mi4nCow
- sildes: http://www.cs.cmu.edu/~rsalakhu/talk_unsup.pdf