1、python中可以将一个函数赋值给一个变量
def hi(name='yasoob'):
return "hi"+name
print(hi()) #hi yasoob
greet=hi #注意这里hi后面没有小括号
print(greet()) #hi yasoob
del hi #如果我们删掉旧的hi函数,看看会发生什么!
print(greet()) ##hi yasoob
print(hi()) #报错:NameError: name 'hi' is not defined
2、在函数中定义函数:在 Python 中我们可以在一个函数中定义另一个函数:
def hi(name='yasoob'):
print("now you are inside the hi() function")
def greet():
return "now you are in the greet() function"
def welcome():
return "now you are in the welcome() function"
print(greet())
print(welcome())
print("now you are back in the hi() function")
#上面展示了无论何时你调用hi(), greet()和welcome()将会同时被调用
hi()
#now you are inside the hi() function
#now you are in the greet() function
#now you are in the welcome() function
#now you are back in the hi() function
#然后greet()和welcome()函数在hi()函数之外是不能访问的
greet() #报错:NameError: name 'greet' is not defined
1)上面展示了无论何时你调用hi(), greet()和welcome()将会同时被调用。
2)然后greet()和welcome()函数在hi()函数之外是不能访问的
3、从函数中返回函数:
def hi1(name='yasoob'):
def greet():
return "now you are in the greet() function"
def welcome():
return "now you are in the welcome() function"
if name=='yasoob':
return greet #注意这里没有小括号
else:
return welcome #注意这里没有小括号
a=hi1()
print(a) #.greet at 0x000001D0654520D8> 这里清晰地展示了`a`现在指向到hi()函数中的greet()函数
print(a()) #now you are in the greet() function #相当于print(greet())
print(hi1('navy')()) #now you are in the welcome() function #相当于print(welcome())
再次看看这个代码。在 if/else 语句中我们返回 greet 和 welcome,而不是 greet() 和 welcome()。为什么那样?这是因为当你把一对小括号放在后面,这个函数就会执行;然而如果你不放括号在它后面,那它可以被到处传递,并且可以赋值给别的变量而不去执行它。 你明白了吗?让我再稍微多解释点细节。
当我们写下 a = hi(),hi() 会被执行,而由于 name 参数默认是 yasoob,所以函数 greet 被返回了。如果我们把语句改为 a = hi(name = "navy"),那么 welcome 函数将被返回。我们还可以打印出 hi()(),这会输出 now you are in the greet() function。
4、将函数作为参数传给另一个函数
def hi():
return "hi yasoob!"
def dosomthingBeforeHi(func):
print("I am doing some boring work before executing hi()")
print(func())
dosomthingBeforeHi(hi)
#I am doing some boring work before executing hi()
#hi yasoob!
5、第一个装饰器:装饰器让你在一个函数的前后去执行代码
def a_new_decorator(a_func):
def wrapTheFunction():
print("I am doing some boring work before executing a_func()")
a_func()
print("I am doing some boring work after executing a_func()")
return wrapTheFunction
def a_function_requiring_decoration():
print("I am the function which needs some decoration to remove my foul smell")
a_function_requiring_decoration() #I am the function which needs some decoration to remove my foul smell
a_function_requiring_decoration=a_new_decorator(a_function_requiring_decoration)
a_function_requiring_decoration()
#I am doing some boring work before executing a_func()
#I am the function which needs some decoration to remove my foul smell
#I am doing some boring work after executing a_func()
我们刚刚应用了之前学习到的原理。这正是 python 中装饰器做的事情!它们封装一个函数,并且用这样或者那样的方式来修改它的行为
6、运用@符号:
def a_new_decorator(a_func):
def wrapTheFunction():
print("I am doing some boring work before executing a_func()")
a_func()
print("I am doing some boring work after executing a_func()")
return wrapTheFunction
@a_new_decorator
def a_function_requiring_decoration():
print("I am the function which needs some decoration to remove my foul smell")
a_function_requiring_decoration()
#I am doing some boring work before executing a_func()
#I am the function which needs some decoration to remove my foul smell
#I am doing some boring work after executing a_func()
print(a_function_requiring_decoration.__name__) #wrapTheFunction
这并不是我们想要的!Ouput输出应该是"a_function_requiring_decoration"。这里的函数被warpTheFunction替代了。它重写了我们函数的名字和注释文档(docstring)。幸运的是Python提供给我们一个简单的函数来解决这个问题,那就是functools.wraps。我们修改上一个例子来使用functools.wraps:
from functools import wraps
def a_new_decorator(a_func):
@wraps(a_func)
def wrapTheFunction():
print("I am doing some boring work before executing a_func()")
a_func()
print("I am doing some boring work after executing a_func()")
return wrapTheFunction
@a_new_decorator
def a_function_requiring_decoration():
"hey you!Decorate me!"
print("I am the function which needs some decoration to remove my foul smell")
print(a_function_requiring_decoration.__name__) # a_function_requiring_decoration
蓝本规范:
from functools import wraps
def decorator_name(f):
@wraps(f)
def decorated(*args,**kwargs):
if not can_run:
return "Function will not run"
return f(*args,**kwargs)
return decorated
@decorator_name
def func():
return("Function is running")
can_run=True
print(func()) #Function is running
can_run=False
print(func()) #Function will not run
注意:@wraps接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等等的功能。这可以让我们在装饰器里面访问在装饰之前的函数的属性。
*args和*kwargs是python中经常使用的函数参数,代表着函数的参数数目是可变的。
def fun(*args,**kwargs):
print("args= ",args)
print("kwargs= ",kwargs)
fun(1,2,3,4)
#args= (1, 2, 3, 4)
#kwargs= {}
fun(a=1,b=2,c=3,d=4)
#args= ()
#kwargs= {'a': 1, 'b': 2, 'c': 3, 'd': 4}
fun(1,2,3,4,a=1,b=2,c=3,d=4)
#args= (1, 2, 3, 4)
#kwargs= {'a': 1, 'b': 2, 'c': 3, 'd': 4}
fun(4,5,6,'hello',a='qwe',b='asd',c='zxc')
#args= (4, 5, 6, 'hello')
#kwargs= {'a': 'qwe', 'b': 'asd', 'c': 'zxc'}
#在函数的参数同时有*args和**kwargs时,args的使用必须要在kwargs的前面
日志运用到装饰器上:
def logit(func):
@wraps(func)
def with_logging(*args,**kwargs):
print(func.__name__+"was called")
return func(*args,**kwargs)
return with_logging
@logit
def addition_func(x):
return x+x
result=addition_func(4) #addition_funcwas called
我们回到日志的例子,并创建一个包裹函数,能让我们指定一个用于输出的日志文件。
from functools import wraps
def logit(logfile='out.log'):
def logging_decorator(func):
@wraps(func)
def wrapped_function(*args,**kwargs):
log_string=func.__name__+"was called"
print(log_string)
with open(logfile,'a') as opened_file:
opened_file.write(log_string+'\n')
return func(*args,**kwargs)
return wrapped_function
return logging_decorator
@logit()
def myfunc1():
pass
myfunc1() #myfunc1was called
@logit(logfile='func2.log')
def myfunc2():
pass
myfunc2() #myfunc2was called
生成了两个文件:out.log和func2.log