二元树的深度 【微软面试100题 第五十二题】

题目要求:

  输入一颗二叉树的根结点,求该树的深度。

  从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。

  如     3

    /    \

   4

    \

     2,深度为3

  参考链接:剑指offer第39题。

题目分析:

  用递归的方式从根结点开始,遍历其左右结点,较大值则为该树的深度。

代码实现:

#include <iostream>

#include <stack>



using namespace std;



typedef struct BinaryTree

{

    struct BinaryTree *left,*right;

    int data;

}BinaryTree;



void initTree(BinaryTree **p);

int FindTreeDepth(BinaryTree *root);



int main(void)

{

    BinaryTree *root;

    initTree(&root);

    cout << "二叉树深度为:" << FindTreeDepth(root) << endl;

    return 0;

}

int FindTreeDepth(BinaryTree *root)

{

    if(root==NULL)

        return 0;

    int left = FindTreeDepth(root->left);

    int right = FindTreeDepth(root->right);

    return (left>right) ? (left+1):(right+1);

}

//      10

//     / \

//    5   12

//   / \

//  4   7

void initTree(BinaryTree **p)

{

    *p = new BinaryTree;

    (*p)->data = 10;

 

    BinaryTree *tmpNode = new BinaryTree;

    tmpNode->data = 5;

    (*p)->left = tmpNode;

 

    tmpNode = new BinaryTree;

    tmpNode->data = 12;

    (*p)->right = tmpNode;

    tmpNode->left = NULL;

    tmpNode->right = NULL;

 

    BinaryTree *currentNode = (*p)->left;

 

    tmpNode = new BinaryTree;

    tmpNode->data = 4;

    currentNode->left = tmpNode;

    tmpNode->left = NULL;

    tmpNode->right = NULL;

 

    tmpNode = new BinaryTree;

    tmpNode->data = 7;

    currentNode->right = tmpNode;

    tmpNode->left = NULL;

    tmpNode->right = NULL;

    

    cout << "二叉树为:" <<endl;

    cout << "     " << 10<<endl;

    cout << "    " <<"/" << "  "<< "\\" <<endl;

    cout << "   " << 5 << "    " << 12 << endl;

    cout << " " <<"/" << "  "<< "\\" <<endl;

    cout << 4 << "    " << 7 << endl;

}

 

题目扩展:

  输入一颗二叉树的根结点,判断该树是不是平衡二叉树。如果某二叉树中任意结点的左右子树的深度相差不超过1,那么它就是一颗平衡二叉树。 

  如    3

 

    /   \

 

    4

 

     \

 

     2,不是平衡二叉树,因为3的左子树深度为2,右子树深度为0,差超过1

  如    3

    /   \

    4     5

     \

      2 ,是平衡二叉树,因为3的左子树深度为2,右子树深度为1,差不超过1;同理4、5、2的左右子树深度都不超过1,则是平衡。

  参考剑指offer第39题。

题目分析:

  用后序遍历的方式遍历二叉树的每个结点(左+右+中),在遍历到一个结点前我们就已经遍历了它的左右子树。只要在遍历每个结点的时候记录它的深度,我们就可以一边遍历一边判断每个结点是不是平衡的。

代码实现:

  

#include <iostream>

#include <stack>



using namespace std;



typedef struct BinaryTree

{

    struct BinaryTree *left,*right;

    int data;

}BinaryTree;



void initTree(BinaryTree **p);

bool IsBalanced(BinaryTree *root);



int main(void)

{

    BinaryTree *root;

    initTree(&root);

    int isBalanced = IsBalanced(root);

    if(isBalanced)

        cout << "是平衡树" << endl;

    else

        cout << "不是平衡树" << endl;

    return 0;

}

bool IsBalanced(BinaryTree *root,int *depth)

{

    if(root==NULL)

    {

        *depth = 0;

        return true;

    }

    int left,right;

    if(IsBalanced(root->left,&left) && IsBalanced(root->right,&right))

    {

        int dif = left-right;

        if(dif<=1 && dif>=-1)

        {

            *depth = 1+(left>right?left:right);

            return true;

        }

    }

    return false;

}

bool IsBalanced(BinaryTree *root)

{

    int depth = 0;

    return IsBalanced(root,&depth);

}

//      10

//     / \

//    5   12

//   / \

//  4   7

void initTree(BinaryTree **p)

{

    *p = new BinaryTree;

    (*p)->data = 10;

    (*p)->right = NULL;

 

    BinaryTree *tmpNode = new BinaryTree;

    tmpNode->data = 5;

    (*p)->left = tmpNode;

    //加上这里就是平衡树,不加就是上图中去掉了12

 /*   tmpNode = new BinaryTree;

    tmpNode->data = 12;

    (*p)->right = tmpNode;

    tmpNode->left = NULL;

    tmpNode->right = NULL;

 */

    BinaryTree *currentNode = (*p)->left;

 

    tmpNode = new BinaryTree;

    tmpNode->data = 4;

    currentNode->left = tmpNode;

    tmpNode->left = NULL;

    tmpNode->right = NULL;

 

    tmpNode = new BinaryTree;

    tmpNode->data = 7;

    currentNode->right = tmpNode;

    tmpNode->left = NULL;

    tmpNode->right = NULL;

    

    cout << "二叉树为:" <<endl;

    cout << "     " << 10<<endl;

    cout << "    " <<"/" << "  "<< "\\" <<endl;

    cout << "   " << 5 << "    " << 12 << endl;

    cout << " " <<"/" << "  "<< "\\" <<endl;

    cout << 4 << "    " << 7 << endl;

}

 

你可能感兴趣的:(面试)