1−cosx=x2/2=secx−1 1 − c o s x = x 2 / 2 = s e c x − 1
(1+bx)a−1=abx ( 1 + b x ) a − 1 = a b x
(tanx)′=sec2x ( t a n x ) ′ = s e c 2 x
(cotx)′=−csc2x ( c o t x ) ′ = − c s c 2 x
(secx)′=secxtanx ( s e c x ) ′ = s e c x t a n x
(cscx)′=−cscxcotx ( c s c x ) ′ = − c s c x c o t x
(arctanx)′=11+x2 ( a r c t a n x ) ′ = 1 1 + x 2
(arccotx)′=−11+x2 ( a r c c o t x ) ′ = − 1 1 + x 2
(arcsinx)′=11−x2√ ( a r c s i n x ) ′ = 1 1 − x 2
(arcsinx)′=−11−x2√ ( a r c s i n x ) ′ = − 1 1 − x 2
sina+sinb=2sina+b2cosa−b2 s i n a + s i n b = 2 s i n a + b 2 c o s a − b 2
sina−sinb=2cosa+b2sina−b2 s i n a − s i n b = 2 c o s a + b 2 s i n a − b 2
cosa+cosb=2cosa+b2cosa−b2 c o s a + c o s b = 2 c o s a + b 2 c o s a − b 2
cosa−cosb=−2sina+b2sina−b2 c o s a − c o s b = − 2 s i n a + b 2 s i n a − b 2
sina∗sinb=−12[cos(a+b)−cos(a−b)] s i n a ∗ s i n b = − 1 2 [ c o s ( a + b ) − c o s ( a − b ) ]
cosa∗cosb=12[cos(a+b)+cos(a−b)] c o s a ∗ c o s b = 1 2 [ c o s ( a + b ) + c o s ( a − b ) ]
sina∗cosb=12[sin(a+b)+sin(a−b)] s i n a ∗ c o s b = 1 2 [ s i n ( a + b ) + s i n ( a − b ) ]
第一类
∫Lf(x,y,z)dS=∫baf[x(t),y(t),z(t)]x′(t)2+y′(t)2+z′(t)2−−−−−−−−−−−−−−−−−√dt ∫ L f ( x , y , z ) d S = ∫ a b f [ x ( t ) , y ( t ) , z ( t ) ] x ′ ( t ) 2 + y ′ ( t ) 2 + z ′ ( t ) 2 d t
第二类
∫LPdx+Qdy+Rdz=∫baP(t)x′(t)+Q(t)y′(t)+R(t)z′(t)dt ∫ L P d x + Q d y + R d z = ∫ a b P ( t ) x ′ ( t ) + Q ( t ) y ′ ( t ) + R ( t ) z ′ ( t ) d t
格林公式
∬∂Q∂x−∂P∂ydxdy=∫LPdx+Qdy ∬ ∂ Q ∂ x − ∂ P ∂ y d x d y = ∫ L P d x + Q d y
与路径无关
∂Q∂x=∂P∂y ∂ Q ∂ x = ∂ P ∂ y
第一类
∬f(x,y,z)ds=∬Df[x,y,z(x,y)]1+F2x+F2y−−−−−−−−−−√dxdy ∬ f ( x , y , z ) d s = ∬ D f [ x , y , z ( x , y ) ] 1 + F x 2 + F y 2 d x d y
第二类
∬R(x,y,z)dxdy=±∬DxyR[x,y,z(x,y)]dxdy ∬ R ( x , y , z ) d x d y = ± ∬ D x y R [ x , y , z ( x , y ) ] d x d y
高斯公式
∭(∂P∂x+∂Q∂y+∂R∂z)dv=∬S外Pdydz+Qdxdz+Rdxdy ∭ ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v = ∬ S 外 P d y d z + Q d x d z + R d x d y
斯托克斯
∬(∂R∂z−∂Q∂y)dydz+(∂P∂x−∂R∂z)dxdz+(∂Q∂x−∂P∂y)dxdy=∫Pdx+Qdy+Rdz ∬ ( ∂ R ∂ z − ∂ Q ∂ y ) d y d z + ( ∂ P ∂ x − ∂ R ∂ z ) d x d z + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∫ P d x + Q d y + R d z
散度
divF=∂P∂x+∂Q∂y+∂R∂z d i v F = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z
旋度
rotF=(∂R∂z−∂Q∂y)i+(∂P∂x−∂R∂z)j+(∂Q∂x−∂P∂y)k r o t F = ( ∂ R ∂ z − ∂ Q ∂ y ) i + ( ∂ P ∂ x − ∂ R ∂ z ) j + ( ∂ Q ∂ x − ∂ P ∂ y ) k
展成幂级数的基础公式们:
ex=∑1n!xn e x = ∑ 1 n ! x n
sinx=∑(−1)n(2n+1)!x2n+1 s i n x = ∑ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1
11+x=∑(−1)nxn 1 1 + x = ∑ ( − 1 ) n x n
傅里叶级系数
an=1π∫π−πf(x)cos nxdx n=0,1,2,3... a n = 1 π ∫ − π π f ( x ) c o s n x d x n = 0 , 1 , 2 , 3...
bn=1π∫π−πf(x)sin nxdx n=1,2,3... b n = 1 π ∫ − π π f ( x ) s i n n x d x n = 1 , 2 , 3...
一阶线性方程通解
二阶常系数齐次通解
δ>0 δ > 0 ,特征方程有两根 λ1,λ2 λ 1 , λ 2
y=C1eλ1x+C2eλ2x y = C 1 e λ 1 x + C 2 e λ 2 x
δ=0 δ = 0 ,特征方程二重根 λ1,λ2 λ 1 , λ 2
y=(C1+C2x)eλ1x y = ( C 1 + C 2 x ) e λ 1 x
δ<0 δ < 0 ,特征方程共轭复根 a±ib a ± i b
y=eax(C1cosbx+C2sinax) y = e a x ( C 1 c o s b x + C 2 s i n a x )
二阶常系数非齐次通解: y = 非齐次特解y*+齐次通解
当 f(x)=eλxPm(x) f ( x ) = e λ x P m ( x )
y∗=xkRm(x)eλx y ∗ = x k R m ( x ) e λ x
当 f(x)=eλx[R1m(x)coswx+R2m(x)sinwx] f ( x ) = e λ x [ R m 1 ( x ) c o s w x + R m 2 ( x ) s i n w x ]
y∗=xkwλx[R1m(x)coswx+R2m(x)sinwx] y ∗ = x k w λ x [ R m 1 ( x ) c o s w x + R m 2 ( x ) s i n w x ]