- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- Python OpenCV图像处理:从基础到高级的全方位指南
极客代码
玩转Python开发语言pythonopencv图像处理计算机视觉
目录第一部分:PythonOpenCV图像处理基础1.1OpenCV简介1.2PythonOpenCV安装1.3实战案例:图像显示与保存1.4注意事项第二部分:PythonOpenCV图像处理高级技巧2.1图像变换2.2图像增强2.3图像复原第三部分:PythonOpenCV图像处理实战项目3.1图像滤波3.2图像分割3.3图像特征提取第四部分:PythonOpenCV图像处理注意事项与优化策略4
- 遥感图像分割系统:融合空间金字塔池化(FocalModulation)改进YOLOv8
xuehaisj
YOLO人工智能计算机视觉yolov8
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义遥感图像分割是遥感技术领域中的一个重要研究方向,它的目标是将遥感图像中的不同地物或地物类别进行有效的分割和识别。随着遥感技术的不断发展和遥感图像数据的大规模获取,遥感图像分割在农业、城市规划、环境监测等领域具有广泛的应用前景。然而,由于遥感图像的特
- SAM2:环境安装&代码调试
要养家的程序猿
AI算法python算法ai人工智能科技
引子时隔大半年,SAM2代终于来了,之前写过一篇《SegmentAnything(SAM)环境安装&代码调试》,感兴趣童鞋请移步SegmentAnything(SAM)环境安装&代码调试-CSDN博客,OK,让我们开始吧。一、模型介绍Meta公司去年发布了SAM1基础模型,已经可以在图像上分割对象。而最新发布的SAM2可用于图片和视频,并可以实现实时、可提示的对象分割。SAM2在图像分割准确性方面
- MATLAB车牌定位和识别系统
清风明月来几时
图像算法处理matlab开发语言
有很多方法可以实现MATLAB车牌的定位和识别系统。以下是一种可能的实现步骤:车牌定位:使用图像处理技术(如边缘检测、区域生长或颜色分割)来检测图像中的车牌区域。使用形态学操作来排除不符合车牌形状的区域。对车牌区域进行裁剪或调整大小,以便后续的识别。车牌识别:将车牌图像转换为灰度图像。使用图像处理技术(如二值化、滤波或增强)来减少噪音并突出字符。使用字符分割算法将车牌中的字符分开。使用特征提取方法
- 探秘3D UNet-PyTorch:高效三维图像分割利器
鲍凯印Fox
探秘3DUNet-PyTorch:高效三维图像分割利器在医学影像处理、计算机视觉和自动驾驶等领域,三维图像的理解与分析至关重要。而是一个基于PyTorch实现的深度学习模型,专为三维图像分割任务设计。本文将深入剖析该项目的技术细节,应用场景及特性,以期吸引更多的开发者和研究人员参与其中。项目简介3DUNet是2DUNet的三维扩展,其结构保持了卷积神经网络的对称性,采用跳跃连接的方式保留了不同尺度
- 图像分割任务在设计模型损失函数时,高斯函数会被如何应用
Wils0nEdwards
计算机视觉人工智能深度学习
什么是高斯函数?Gaussianfunction,又称为高斯函数,是一种常见的数学函数,定义为一种特定形状的钟形曲线。其表达式通常为:f(x)=a⋅exp(−(x−b)22c2)f(x)=a\cdot\exp\left(-\frac{(x-b)^2}{2c^2}\right)f(x)=a⋅exp(−2c2(x−b)2)其中:aaa决定了曲线的高度(峰值)。bbb是曲线中心位置的均值,决定曲线的对
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 汽车智能驾驶算法汇总
芊言芊语
汽车算法
汽车智能驾驶算法是自动驾驶技术的核心,它们集成了多个学科的知识,包括计算机视觉、机器学习、控制理论、路径规划等。以下是对汽车智能驾驶算法的一个详细汇总,内容分为几个关键部分进行阐述。一、计算机视觉算法计算机视觉是智能驾驶算法中用于识别和理解环境的关键技术。它主要包括图像处理、特征提取和对象识别等步骤。图像处理:通过摄像头等设备获取车辆前方的图像,然后进行预处理,如灰度化、二值化、滤波等操作,以提高
- 【Python】成功解决TypeError: list indices must be integers or slices, not str
高斯小哥
BUG解决方案合集pythonlist新手入门学习debug
【Python】成功解决TypeError:listindicesmustbeintegersorslices,notstr欢迎进入我的个人主页,我是高斯小哥!博主档案:广东某985本硕,SCI顶刊一作,深耕深度学习多年,熟练掌握PyTorch框架。技术专长:擅长处理各类深度学习任务,包括但不限于图像分类、图像重构(去雾\去模糊\修复)、目标检测、图像分割、人脸识别、多标签分类、重识别(行人\车辆
- unity3d 大地图接壤_多人紧密交互场景下的多视角人体动态三维重建方法与流程...
weixin_39947908
unity3d大地图接壤
本发明属于计算机视觉和图形学领域,具体讲,涉及人体关键点检测、追踪和人体三维模型重建方法。背景技术:在计算机视觉和计算机图形学中,无标记人体运动捕捉已经成为一个热门并且具有挑战性的热点问题,其主要任务是通过跟踪视频中移动对象的运动来恢复动态时间一致的3D形状。最近十年以来单人运动捕捉方法取得了巨大的进步,然而当前的方法需要对相机进行设置或处于一个受控的工作室环境中,并且依赖于良好的图像分割技术。在
- 数据图像处理26
逸缘
人工智能计算机视觉算法图像处理python
六、图像分割6.3分水岭图像分割6.3.1分水岭算法的基本概念分水岭算法之所以得名,是因为其的分割原理与地理学中的分水岭现象非常相似。在地理学中,分水岭是分隔相邻水系的山岭或高地,雨水会分别流向两侧的水系。分水岭算法常用于图像的态学分割。它把图像比作一个地形图,其中每个像素的灰度值则代表该点的海拔高度。分水岭算法可以想象成是模拟水从局部最小值(低地)开始流动并汇聚成河流,最终在不同河流相遇处形成分
- opencv学习笔记19-opencv焊点(原点)计数
The_xz
opencv学习笔记
一、原理:opencv学习笔记13-opencv连通组件标记实现硬币计数二、不同情况思路:当焊点为背景时,进行反色处理(二值化后若焊点为背景,转化为前景)。三、示例代码:#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(){utils::logging::setLog
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- matlab车牌识别系统实现
MATLAB管家matlab674
图像处理MATLABmatlab开发语言
要实现基于Matlab的车牌识别系统,你可以按照以下步骤进行操作:数据集准备:收集包含不同类型车牌的图像数据集,包括正面、倾斜、模糊等不同情况的车牌图像。图像预处理:使用Matlab中的图像处理工具,对车牌图像进行预处理。可以包括降噪、图像增强、图像分割等操作。车牌定位:使用图像处理技术,对预处理后的图像进行车牌定位。可以使用边缘检测、投影法、颜色识别等方法。字符分割:对定位到的车牌图像进行字符分
- 快速使用transformers的pipeline实现各种深度学习任务
E寻数据
huggingface计算机视觉nlp深度学习人工智能pythonpipelinetransformers
目录引言安装情感分析文本生成文本摘要图片分类实例分割目标检测音频分类自动语音识别视觉问答文档问题回答图文描述引言在这篇中文博客中,我们将深入探讨使用transformers库中的pipeline()函数,它为预训练模型提供了一个简单且快速的推理方法。pipeline()函数支持多种任务,包括文本分类、文本生成、摘要生成、图像分类、图像分割、对象检测、音频分类、自动语音识别、视觉问题回答、文档问题回
- Python实现分水岭图像分割算法
闲人编程
图像处理python算法开发语言图像分割分水岭
目录Python实现分水岭图像分割算法的详细博客一、引言二、分水岭算法的原理三、Python实现分水岭算法四、算法步骤解析1.图像预处理2.计算梯度图像3.阈值分割4.距离变换与标记操作5.分水岭变换五、应用场景:细胞图像分割1.读取细胞图像2.应用高斯模糊去除噪声3.计算梯度图像4.阈值分割5.距离变换与标记操作6.分水岭变换六、分水岭算法的挑战与优化七、结论八、运行结果Python实现分水岭图
- 图像数据处理24
逸缘
计算机视觉图像处理人工智能阙值分割
六、图像分割6.1阈值分割6.1.1阙值分割的基本概念根据图像的灰度值来对图像进行分割,高于灰度值的常被认为是前景图像,而低于灰度值的则被认为是背景图像。阙值的设定并不是唯一的,在对灰度图像进行阙值分割时可以设置多个阙值。6.1.2全局阙值与局部阙值全局阙值:对图片中所有像素都适用的阙值。局部阙值:图片中某像素的阙值是根据其的邻接像素等计算得出,该阙值只作用与某一部分素值。6.1.3灰度直方图与阙
- python的图像阈值化处理及算法对比
yava_free
计算机视觉人工智能python
一.阈值化(注:该部分参考作者的论文《基于苗族服饰的图像锐化和边缘提取技术研究》)图像的二值化或阈值化(Binarization)旨在提取图像中的目标物体,将背景以及噪声区分开来。通常会设定一个阈值T,通过T将图像的像素划分为两类:大于T的像素群和小于T的像素群。灰度转换处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度。二值化处理可以将图像中的像素划分为两类颜色,常用的二值化算法如公式
- spark mllib 特征学习笔记 (一)
路人与大师
spark-ml学习笔记
PySparkMLlib特征处理详解PySparkMLlib提供了丰富的特征处理工具,帮助我们进行特征提取、转换和选择。以下是PySparkMLlib中常用的特征处理类及其简要介绍。1.BinarizerBinarizer是将连续特征二值化的转换器。frompyspark.ml.featureimportBinarizerbinarizer=Binarizer(threshold=0.5,inpu
- OpenCV中的轮廓检测cv2.findContours()
Limiiiing
OpenCVopencvpython图像处理
文章目录前言一、查找轮廓二、绘制轮廓轮廓面积轮廓周长前言轮廓提取的前提,将背景置为黑色,目标为白色(利用二值化或Canny)边缘检测,例如Canny等,利用梯度变化,记录图像中的边缘像素点,返回和源图片一样尺寸和类型的边缘图。轮廓检测,则是将得到的每一个轮廓信息存储下来,记录的是轮廓之间和内部的信息。一、查找轮廓contours,hierarchy=cv2.findContours(image,m
- C# 教程 目录
VB.Net
C#教程C#教程
17.3图像处理17.3.1像素处理17.3.1.1逆反(底片)17.3.1.2曝光17.3.1.3灰度17.3.1.4浮雕17.3.1.5二值化(黑白)17.3.1.6自定义处理17.3.2内存处理17.3.2.1Bitmap.LockBits方法和Bitmap.UnlockBits方法17.3.2.2BitmapData类17.3.2.3逆反17.3.2.4曝光17.3.2.5灰度17.3.2
- 【机器学习】4. 相似性比较(二值化数据)与相关度(correlation)
pen-ai
机器学习机器学习人工智能scikit-learnpython
SMCSimpleMatchingCoefficient评估两组二进制数组相似性的参数SMC=(f11+f00)/(f01+f10+f11+f00)其中,f11表示两组都为1的组合个数,f10表示第一组为1,第二组为0的组合个数。这样做会有一个缺点,假设是比较稀疏的数据,如今天去哪一个地区,地区有成千上万个,但是去的只有一个地区。那么就会导致f00非常的大,如此计算的结果SMC必然很大,但是能够代
- Blob分析
*Major*
halcon
Blob分析Blob分析Blob分析Blob:斑点分析。分析物体的二维特征、二维形状特征一Blob分析流程采集图像图像分割形态学处理连通性分析填充特征提取二图像分割thresholdbin_thresholdauto_thresholddyn_thresholdvar_threshold三连通性分析connection:把大区域分离成多个独立的小区域,分析其联通关系逆运算:union四特征提取可以
- 机器学习:knn算法实现图像识别
夜清寒风
机器学习算法人工智能
1、概述使用K-近邻(K-NearestNeighbors,KNN)算法对手写数字进行识别的过程。通过读取一张包含多个手写数字的图片,将其分割成单独的数字图像,并将其作为训练和测试数据集。2、数据处理思路1、图像分割该数据有50行100列,每个数字占据20*20个像素点,可以进行切分2、划分出训练集和测试集3、每个数据的像素点为20*20,将其全部变成一列1*400格式,转换成数值特征4、最后使用
- Android 实现照片抠出人像。
No Promises﹉
android
谢谢阅览、关注!!一、各平台的实现方式:1.Android实现方式:使用图像处理库(如OpenCV):集成OpenCV库,利用其图像处理功能进行边缘检测和图像分割;使用机器学习模型(如TensorFlowLite):集成TensorFlowLite和预训练的人像分割模型;使用第三方API服务:利用如百度AI、腾讯AI等提供的在线API进行图像处理。步骤:集成必要的库或API、加载和处理图像、应用抠
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 图像算法实习生--面经1
小豆包的小朋友0217
算法
系列文章目录文章目录系列文章目录前言一、为什么torch里面要用optimizer.zero_grad()进行梯度置0二、Unet神经网络为什么会在医学图像分割表现好?三、transformer相关问题四、介绍一下胶囊网络的动态路由五、yolo系列出到v9了,介绍一下你最熟悉的yolo算法六、一阶段目标检测算法和二阶段目标检测算法有什么区别?七、讲一下剪枝八、讲一下PTQandQAT量化的区别九、
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- Unet 高阶分割网络实战、多类别分割、迁移学习(deeplab、resnet101等等)
听风吹等浪起
图像分割计算机视觉人工智能
1、前言Unet图像分割之前介绍了不少,具体可以参考图像分割专栏为了实现多类别的自适应分割,前段时间利用numpy的unique函数实现了一个项目。通过numpy函数将mask的灰度值提取出来,保存在txt文本里,这样txt里面就会有类似012...等等的灰度值。而有几个灰度值,就代表分割要分出几个类别。具体可以参考:Unet实战分割项目、多尺度训练、多类别分割将vgg换成resnet的unet参
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持